TY - CHAP A1 - Bhattarai, Aroj A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - Computational Analysis of Pelvic Floor Dysfunction T2 - Women's Health and Biomechanics N2 - Pelvic floor dysfunction (PFD) is characterized by the failure of the levator ani (LA) muscle to maintain the pelvic hiatus, resulting in the descent of the pelvic organs below the pubococcygeal line. This chapter adopts the modified Humphrey material model to consider the effect of the muscle fiber on passive stretching of the LA muscle. The deformation of the LA muscle subjected to intra-abdominal pressure during Valsalva maneuver is compared with the magnetic resonance imaging (MRI) examination of a nulliparous female. Numerical result shows that the fiber-based Humphrey model simulates the muscle behavior better than isotropic constitutive models. Greater posterior movement of the LA muscle widens the levator hiatus due to lack of support from the anococcygeal ligament and the perineal structure as a consequence of birth-related injury and aging. Old and multiparous females with uncontrolled urogenital and rectal hiatus tend to develop PFDs such as prolapse and incontinence. KW - Pelvic muscle KW - Muscle fibers KW - Passive stretching KW - Pelvic floor dysfunction Y1 - 2018 SN - 978-3-319-71574-2 U6 - https://doi.org/10.1007/978-3-319-71574-2_17 N1 - Lecture Notes in Computational Vision and Biomechanics, vol 29 SP - 217 EP - 230 PB - Springer CY - Cham ER - TY - CHAP A1 - Tran, N. T. A1 - Tran, Thanh Ngoc A1 - Matthies, M. G. A1 - Stavroulakis, G. E. A1 - Staat, Manfred T1 - Shakedown Analysis Under Stochastic Uncertainty by Chance Constrained Programming T2 - Advances in Direct Methods for Materials and Structures N2 - In this paper we propose a stochastic programming method to analyse limit and shakedown of structures under uncertainty condition of strength. Based on the duality theory, the shakedown load multiplier formulated by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier formulated by static theorem. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) with three-node linear triangular elements is used for structural analysis. Y1 - 2017 SN - 978-3-319-59810-9 U6 - https://doi.org/10.1007/978-3-319-59810-9_6 SP - 85 EP - 103 PB - Springer CY - Cham ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Nguyen, Nhu Huynh A1 - Staat, Manfred T1 - Physical response of hyperelastic models for composite materials and soft tissues T2 - Advances in Composite Material Y1 - 2017 SN - 978-1-61896-300-0 (Hardcover), 978-1-61896-299-7 (Paperback) N1 - Chapter 5 PB - Scientific Research Publishing CY - Wuhan ER - TY - CHAP A1 - Digel, Ilya A1 - Sadykov, R. A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Changes in intestinal microflora in rats induced by oral exposure to low lead (II) concentrations T2 - Lead Exposure and Poisoning: Clinical Symptoms, Medical Management and Preventive Strategies Y1 - 2015 SN - 9781634826990 SP - 75 EP - 99 PB - Nova Science Publ. ER - TY - CHAP A1 - Tran, Thanh Ngoc A1 - Staat, Manfred T1 - Uncertainty multimode failure and shakedown analysis of shells T2 - Direct methods for limit and shakedown analysis of structures / eds. Paolo Fuschi ... N2 - This paper presents a numerical procedure for reliability analysis of thin plates and shells with respect to plastic collapse or to inadaptation. The procedure involves a deterministic shakedown analysis for each probabilistic iteration, which is based on the upper bound approach and the use of the exact Ilyushin yield surface. Probabilistic shakedown analysis deals with uncertainties originated from the loads, material strength and thickness of the shell. Based on a direct definition of the limit state function, the calculation of the failure probability may be efficiently solved by using the First and Second Order Reliability Methods (FORM and SORM). The problem of reliability of structural systems (series systems) is handled by the application of a special technique which permits to find all the design points corresponding to all the failure modes. Studies show, in this case, that it improves considerably the FORM and SORM results. KW - Limit analysis KW - Shakedown analysis KW - Reliability analysis KW - Multimode failure KW - Non-linear optimization Y1 - 2015 SN - 978-3-319-12927-3 (print) ; 978-3-319-12928-0 (online) U6 - https://doi.org/10.1007/978-3-319-12928-0_14 SP - 279 EP - 298 PB - Springer CY - Cham ER - TY - CHAP A1 - Knott, Thomas C. A1 - Sofronia, Raluca E. A1 - Gerressen, Marcus A1 - Law, Yuen A1 - Davidescu, Arjana A1 - Savii, George G. A1 - Gatzweiler, Karl-Heinz A1 - Staat, Manfred A1 - Kuhlen, Torsten W. T1 - Preliminary bone sawing model for a virtual reality-based training simulator of bilateral sagittal split osteotomy T2 - Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789) N2 - Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted. KW - Bone sawing KW - virtual reality KW - training simulator Y1 - 2014 SN - 978-3-319-12057-7 (Online) SN - 978-3-319-12056-0 (Print) U6 - https://doi.org/10.1007/978-3-319-12057-7_1 SP - 1 EP - 10 PB - Springer CY - Cham ER - TY - CHAP A1 - Frotscher, Ralf A1 - Goßmann, Matthias A1 - Raatschen, Hans-Jürgen A1 - Temiz Artmann, Aysegül A1 - Staat, Manfred T1 - Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM T2 - Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45) N2 - We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments. Y1 - 2015 SN - 978-3-319-02534-6 ; 978-3-319-02535-3 SP - 187 EP - 212 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Macdonald, Malcolm A1 - McGrath, C. A1 - Appourchaux, T. A1 - Dachwald, Bernd A1 - Finsterle, W. A1 - Gizon, L. A1 - Liewer, P. C. A1 - McInnes, Colin R. A1 - Mengali, G. A1 - Seboldt, W. A1 - Sekii, T. A1 - Solanki, S. K. A1 - Velli, M. A1 - Wimmer-Schweingruber, R. F. A1 - Spietz, Peter A1 - Reinhard, Ruedeger ED - Macdonald, Malcolm T1 - Gossamer roadmap technology reference study for a solar polar mission T2 - Advances in solar sailing N2 - A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100–125 m to deliver a ‘sufficient value’ minimum science payload, and that a 2.5 μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass. Y1 - 2014 SN - 978-3-642-34906-5 U6 - https://doi.org/10.1007/978-3-642-34907-2_17 SP - 243 EP - 257 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - McInnes, Colin R. A1 - Bothmer, Volker A1 - Dachwald, Bernd A1 - Geppert, Ulrich R. M. E. A1 - Heiligers, Jeannette A1 - Hilgers, Alan A1 - Johnson, Les A1 - Macdonald, Malcolm A1 - Reinhard, Ruedeger A1 - Seboldt, Wolfgang A1 - Spietz, Peter T1 - Gossamer roadmap technology reference study for a Sub-L1 Space Weather Mission T2 - Advances in solar sailing N2 - A technology reference study for a displaced Lagrange point space weather mission is presented. The mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy to deliver a low mass platform and payload which can be accommodated on the DLR/ESA Gossamer-3 technology demonstration mission. A direct escape from Geostationary Transfer Orbit is assumed with the sail deployed after the escape burn. The use of a miniaturized, low mass platform and payload then allows the Gossamer-3 solar sail to potentially double the warning time of space weather events. The mission profile and mass budgets will be presented to achieve these ambitious goals. Y1 - 2014 SN - 978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book) SP - 227 EP - 242 PB - Springer CY - Berlin [u.a.] ER - TY - CHAP A1 - Dachwald, Bernd A1 - Boehnhardt, Herrmann A1 - Broj, Ulrich A1 - Geppert, Ulrich R. M. E. A1 - Grundmann, Jan-Thimo A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Johnson, Les A1 - Kührt, Ekkehard A1 - Mottola, Stefano A1 - Macdonald, Malcolm A1 - McInnes, Colin R. A1 - Vasile, Massimiliano A1 - Reinhard, Ruedeger T1 - Gossamer roadmap technology reference study for a multiple NEO Rendezvous Mission T2 - Advances in solar sailing N2 - A technology reference study for a multiple near-Earth object (NEO) rendezvous mission with solar sailcraft is currently carried out by the authors of this paper. The investigated mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy based on the DLR/ESA Gossamer technology. The main scientific objective of the mission is to explore the diversity of NEOs. After direct interplanetary insertion, the solar sailcraft should—within less than 10 years—rendezvous three NEOs that are not only scientifically interesting, but also from the point of human spaceight and planetary defense. In this paper, the objectives of the study are outlined and a preliminary potential mission profile is presented. Y1 - 2014 SN - 978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book) SP - 211 EP - 226 PB - Springer CY - Berlin [u.a.] ER -