TY - JOUR A1 - Schroeter, Rebecca A1 - Hoffmann, Tamara A1 - Voigt, Birgit A1 - Meyer, Hanna A1 - Bleisteiner, Monika A1 - Muntel, Jan A1 - Jürgen, Britta A1 - Albrecht, Dirk A1 - Becher, Dörte A1 - Lalk, Michael A1 - Evers, Stefan A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Putzer, Harald A1 - Hecker, Michael A1 - Schweder, Thomas A1 - Bremer, Erhard T1 - Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges JF - PLoS ONE N2 - The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. Y1 - 2014 U6 - http://dx.doi.org/10.1371/journal.pone.0080956 SN - 1932-6203 VL - 8 IS - 11 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Wang, Ren-Qi A1 - Druckenmüller, Katharina A1 - Elbers, Gereon A1 - Guenther, Klaus A1 - Croué, Jean-Philippe T1 - Analysis of aquatic-phase natural organic matter by optimized LDI-MS method JF - Journal of mass spectrometry N2 - The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200–1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200–15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley & Sons, Ltd. Y1 - 2014 U6 - http://dx.doi.org/10.1002/jms.3321 SN - 1096-9888 VL - 49 IS - 2 SP - 154 EP - 160 PB - Wiley CY - Bognor Regis ER - TY - JOUR A1 - Handtke, Stefan A1 - Schroeter, Rebecca A1 - Jürgen, Britta A1 - Methling, Karen A1 - Schlüter, Rabea A1 - Albrecht, Dirk A1 - Hijum, Sacha A. F. T. van A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Lalk, Michael A1 - Schweder, Thomas A1 - Hecker, Michael A1 - Voigt, Birgit T1 - Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress JF - PLOS one N2 - Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus. Y1 - 2014 U6 - http://dx.doi.org/10.1371/journal.pone.0085625 SN - 1932-6203 VL - 9 IS - 1 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Heinze, Daniel A1 - Mang, Thomas A1 - Peter, Karin A1 - Möller, Martin A1 - Weichold, Oliver T1 - Synthesis of low molecular weight poly(vinyl acetate) and its application as plasticizer JF - Journal of applied polymer science N2 - Poly(vinyl acetate), PVAc, with a degree of polymerization Xn = 10 was prepared by chain-transfer radical polymerization using carbon tetrachloride and used as oligomeric plasticizer for commercial PVAc. However, the chlorinated chain ends cause a low thermal stability requiring mild Cl/H substitution. The product exhibits high thermal stability and excellent melt-compounding properties. Blends of oligomeric and commercial PVAc show single glass transition temperatures which decrease with higher oligomer content and exhibit small negative deviations from Fox' linear additivity rule. This indicates plasticization and miscibility being mainly due to entropic effects. Injection-moulded thick specimens show ductile behaviour at oligomer contents >10 wt %, while sheets with a thickness of 0.2–0.5 mm appear flexible already at 7.5 wt %. The oxygen permeability coefficients are an order of magnitude lower than those of low-density polyethylene. Due to the sum of their properties, the plasticized sheets present a promising alternative in the preparation of barrier materials. Y1 - 2014 U6 - http://dx.doi.org/10.1002/app.40226 SN - 1097-4628 (E-Journal); 0021-8995 (Print) VL - 131 IS - 9 SP - Article No. 40226 PB - Wiley CY - New York ER - TY - JOUR A1 - Winckler, Silvia A1 - Krueger, Rolf A1 - Schnitzler, Thomas A1 - Zang, Werner A1 - Fischer, Rainer A1 - Biselli, Manfred T1 - A sensitive monitoring system for mammalian cell cultivation processes: a PAT approach JF - Bioprocess and biosystems engineering N2 - Biopharmaceuticals such as antibodies are produced in cultivated mammalian cells, which must be monitored to comply with good manufacturing practice. We, therefore, developed a fully automated system comprising a specific exhaust gas analyzer, inline analytics and a corresponding algorithm to precisely determine the oxygen uptake rate, carbon dioxide evolution rate, carbon dioxide transfer rate, transfer quotient and respiratory quotient without interrupting the ongoing cultivation, in order to assess its reproducibility. The system was verified using chemical simulation experiments and was able to measure the respiratory activity of hybridoma cells and DG44 cells (derived from Chinese hamster ovary cells) with satisfactory results at a minimum viable cell density of ~2.0 × 10⁵ cells ml⁻¹. The system was suitable for both batch and fed-batch cultivations in bubble-aerated and membrane-aerated reactors, with and without the control of pH and dissolved oxygen. Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00449-013-1062-8 SN - 1615-7591 (Print) 1615-7605 (Online) VL - 37 IS - 5 SP - 901 EP - 912 PB - Springer CY - Berlin, Heidelberg ER -