TY - JOUR A1 - Giresini, Linda A1 - Sassu, Mauro A1 - Butenweg, Christoph A1 - Alecci, Valerio A1 - De Stefano, Mario T1 - Vault macro-element with equivalent trusses in global seismic analyses JF - Earthquakes and Structures N2 - This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports. KW - vault KW - macro-element KW - equivalent stiffness KW - truss KW - churches Y1 - 2017 U6 - http://dx.doi.org/10.12989/eas.2017.12.4.409 SN - 2092-7614 (Print) SN - 2092-7622 (Online) VL - 12 IS - 4 SP - 409 EP - 423 PB - Techno-Press CY - Taejŏn ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Berg-Postweiler, Julia A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - One size does not fit all: Applying antibias trainings in academia JF - The International Journal of Organizational Diversity N2 - Antibias training is increasingly demanded and practiced in academia and industry to increase employees’ sensitivity to discrimination, racism, and diversity. Under the heading of “Diversity Management,” antibias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, promote awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of antibias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the article aims to explore how sustainable the effects of individual antibias trainings on participants’ behavior are. In order to investigate this, participant observation in a qualitative pre–post setting was conducted, analyzing antibias training in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single antibias trainings and show that a target-group adaptive approach is mandatory owing to the background of the approach in early childhood education. Therefore, antibias work needs to be adapted to the target group’s needs and realities of life. Furthermore, the study reveals that single antibias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This article is one of the first to scientifically evaluate antibias training effectiveness, especially in engineering sciences and the university context. KW - Antibias KW - Diversity Management KW - Organizational Culture KW - Engineering Habitus Y1 - 2023 U6 - http://dx.doi.org/10.18848/2328-6261/CGP/v24i01/1-23 SN - 2328-6261 (Print) SN - 2328-6229 (Online) VL - 24 IS - 1 SP - 1 EP - 23 PB - Common Ground Research Networks ER - TY - CHAP A1 - Nierle, Elisabeth A1 - Pieper, Martin T1 - Measuring social impacts in engineering education to improve sustainability skills T2 - European Society for Engineering Education (SEFI) N2 - In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars. In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany. The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison. KW - Social impact measurement KW - Key competences KW - Sustainable engineering education KW - Future skills Y1 - 2023 U6 - http://dx.doi.org/10.21427/QPR4-0T22 N1 - 51st Annual Conference of the European Society for Engineering Education (SEFI) N1 - Corresponding Author: Elisabeth Nierle ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Bernhard, Sebastian A1 - Langolf, Jessica A1 - Leicht-Scholten, Carmen T1 - About the paradox of sustainable production and what we can do about it! T2 - Joint SCORAI-ERSCP-WUR conference on transforming consumption-production systems toward just and sustainable futures (SCP23), July 5-8, 2023, Wageningen, The Netherlands N2 - Sustainability is playing an increasingly important role. Not least due to the definition of the sustainable development goals (SDGs) in the framework of the agenda 2030 by the United Nations (UN) in 2015 (United Nations, n.d.), it has become clear that the cooperation of different actors is needed to achieve the defined 17 goals. Industry, as a global actor, has a special role to play in this. In the course of sustainable production processes and chains, the industry is confronted with the responsibility of reflecting on the consequences of its own trade on an ecological, economic, and also social level and deriving measures that, according to the definition of sustainability (Hauff, 1987), will also enable future generations to satisfy their needs. While the ecological pillar of sustainability is already being addressed by different industrial initiatives (Deloitte, 2021), it is questionable to what extent the economic and, above all, the social pillars of sustainability also play a decisive role. Accordingly, it is questionable to what extent sustainability in its triad of social, ecological, and economic aspects is taken into account holistically at all, and thus to what extent the industry contributes to achieving the 17 goals defined by the UN. This paper presents a qualitative study that explores these questions. Interviewing 31 representatives from the manufacturing industry in Germany, results indicate a Paradox of Sustainable Production expressed by a theoretical reflection of the need for focusing on people in production processes on the one hand and a lack of addressing the social pillar of sustainability in concepts on the other hand. However, while it is a troublesome finding given the striking need for sustainable development (The-Sustainable-Development-Goals-Report-2022; Kropp 2019; von Hauff 2021; Roy and Singh 2017), the paradox directly lays out a path of resolving it. This is because, given its nature, we can see that we could resolve it via the implementation of strong educational efforts trying to help the respective people of the manufacturing industry to understand the holistic and interdependent character of sustainable development (The-Sustainable-Development-Goals-Report-2022). Y1 - 2023 N1 - Volltext auf dem Opus-Server verfügbar ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Berg-Postweiler, Julia A1 - Leicht-Scholten, Carmen T1 - One does not fit all: applying anti-bias trainings in academia T2 - Twenty-third international conference on diversity in organizations, communities & nations June 22 - 23, 2023 Toronto Metropolitan University, Rogers Communication Centre Toronto, Canada N2 - Anti-bias trainings are increasingly demanded and practiced in academia and industry to increase employees’ sensitivity to discrimination, racism, and diversity. Under the heading of “Diversity Management”, anti-bias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, awake awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of anti-bias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the paper explores how sustainable the effects of individual anti-bias trainings on the behavior of participants are. In order to investigate this, participant observation in a qualitative pre-post setting was conducted, analyzing anti-bias trainings in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single anti-bias trainings and show that a target-group adaptive approach is mandatory due to the background of the approach in early childhood education. Therefore, it can be concluded that anti-bias work needs to be adapted to the target group’s needs and reality of life. Furthermore, the study reveals that single anti-bias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This paper is one of the first to scientifically evaluate anti-bias training effectiveness, especially in engineering sciences and the university context. KW - Academia KW - Engineering Habitus KW - Organizational Culture KW - Diversity Management KW - Anti-Bias Y1 - 2023 ER - TY - CHAP A1 - Duran Paredes, Ludwin A1 - Mottaghy, Darius A1 - Herrmann, Ulf A1 - Groß, Rolf Fritz T1 - Online ground temperature and soil moisture monitoring of a shallow geothermal system with non-conventional components T2 - EGU General Assembly 2020 N2 - We present first results from a newly developed monitoring station for a closed loop geothermal heat pump test installation at our campus, consisting of helix coils and plate heat exchangers, as well as an ice-store system. There are more than 40 temperature sensors and several soil moisture content sensors distributed around the system, allowing a detailed monitoring under different operating conditions.In the view of the modern development of renewable energies along with the newly concepts known as Internet of Things and Industry 4.0 (high-tech strategy from the German government), we created a user-friendly web application, which will connect the things (sensors) with the open network (www). Besides other advantages, this allows a continuous remote monitoring of the data from the numerous sensors at an arbitrary sampling rate.Based on the recorded data, we will also present first results from numerical simulations, taking into account all relevant heat transport processes.The aim is to improve the understanding of these processes and their influence on the thermal behavior of shallow geothermal systems in the unsaturated zone. This will in turn facilitate the prediction of the performance of these systems and therefore yield an improvement in their dimensioning when designing a specific shallow geothermal installation. Y1 - 2020 N1 - Online 4–8 May 2020 [Session ERE2.8] EGU2020-19052 ER - TY - JOUR A1 - Dellmann, Sophia Florence A1 - Glorius, J. A1 - Litvinov, Yu A. A1 - Reifarth, R. A1 - Al-Khasawneh, Kafa A1 - Aliotta, M. A1 - Bott, L. A1 - Brückner, Benjamin A1 - Bruno, C. G. A1 - Chen, Ruijiu A1 - Davinson, T. A1 - Dickel, T. A1 - Dillmann, Iris A1 - Dmytriev, D. A1 - Erbacher, P. A1 - Freire-Fernández, D. A1 - Forstner, Oliver A1 - Geissel, H. A1 - Göbel, K. A1 - Griffin, Christopher J. A1 - Grisenti, R. A1 - Gumberidze, Alexandre A1 - Haettner, Emma A1 - Hagmann, Siegbert A1 - Heil, M. A1 - Heß, R. A1 - Hillenbrand, P.-M. A1 - Joseph, R. A1 - Jurado, B. A1 - Kozhuharov, Christophor A1 - Kulikov, I. A1 - Löher, Bastian A1 - Langer, Christoph A1 - Leckenby, Guy A1 - Lederer-Woods, C. A1 - Lestinsky, M. A1 - Litvinov, S. A. A1 - Lorenz, B. A. A1 - Lorenz, E. A1 - Marsh, J. A1 - Menz, Esther Babette A1 - Morgenroth, T. A1 - Petridis, N. A1 - Pibernat, Jerome A1 - Popp, U. A1 - Psaltis, Athanasios A1 - Sanjari, Shahab A1 - Scheidenberger, C. A1 - Sguazzin, M. A1 - Sidhu, Ragandeep Singh A1 - Spillmann, Uwe A1 - Steck, M. A1 - Stöhlker, T. A1 - Surzhykov, A. A1 - Swartz, J. A. A1 - Törnqvist, H. A1 - Varga, L. A1 - Vescovi, Diego A1 - Weick, H. A1 - Weigand, M. A1 - Woods, P. A1 - Xing, Y. A1 - Yamaguchi, Taiyo T1 - Proton capture on stored radioactive ¹¹⁸Te ions JF - EPJ Web of Conferences N2 - Experimental determination of the cross sections of proton capture on radioactive nuclei is extremely difficult. Therefore, it is of substantial interest for the understanding of the production of the p-nuclei. For the first time, a direct measurement of proton-capture cross sections on stored, radioactive ions became possible in an energy range of interest for nuclear astrophysics. The experiment was performed at the Experimental Storage Ring (ESR) at GSI by making use of a sensitive method to measure (p,γ) and (p,n) reactions in inverse kinematics. These reaction channels are of high relevance for the nucleosyn-thesis processes in supernovae, which are among the most violent explosions in the universe and are not yet well understood. The cross section of the ¹¹⁸Te(p,γ) reaction has been measured at energies of 6 MeV/u and 7 MeV/u. The heavy ions interacted with a hydrogen gas jet target. The radiative recombination process of the fully stripped ¹¹⁸Te ions and electrons from the hydrogen target was used as a luminosity monitor. An overview of the experimental method and preliminary results from the ongoing analysis will be presented. Y1 - 2023 U6 - http://dx.doi.org/10.1051/epjconf/202327911018 SN - 2100-014X N1 - Volume 279, 2023. Nuclear Physics in Astrophysics – X (NPA-X 2022). VL - 279 IS - Article Number: 11018 SP - 1 EP - 5 PB - EDP Sciences ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Cheenakula, Dheeraja A1 - Nikolausz, Marcell A1 - Krafft, Simone A1 - Harms, Hauke A1 - Kuperjans, Isabel T1 - Design and construction of a new reactor for flexible biomethanation of hydrogen JF - Fermentation N2 - The increasing share of renewable electricity in the grid drives the need for sufficient storage capacity. Especially for seasonal storage, power-to-gas can be a promising approach. Biologically produced methane from hydrogen produced from surplus electricity can be used to substitute natural gas in the existing infrastructure. Current reactor types are not or are poorly optimized for flexible methanation. Therefore, this work proposes a new reactor type with a plug flow reactor (PFR) design. Simulations in COMSOL Multiphysics ® showed promising properties for operation in laminar flow. An experiment was conducted to support the simulation results and to determine the gas fraction of the novel reactor, which was measured to be 29%. Based on these simulations and experimental results, the reactor was constructed as a 14 m long, 50 mm diameter tube with a meandering orientation. Data processing was established, and a step experiment was performed. In addition, a kLa of 1 h−1 was determined. The results revealed that the experimental outcomes of the type of flow and gas fractions are in line with the theoretical simulation. The new design shows promising properties for flexible methanation and will be tested. KW - methanation KW - plug flow reactor KW - bubble column KW - bio-methane KW - power-to-gas Y1 - 2023 U6 - http://dx.doi.org/10.3390/fermentation9080774 SN - 2311-5637 N1 - The article belongs to the Special Issue Fermentation Processes: Modeling, Optimization and Control VL - 9 IS - 8 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - CHAP A1 - Steuer-Dankert, Linda T1 - Training future skills - sustainability, interculturality & innovation in a digital design thinking format T2 - Proceedings of the 19th International CDIO Conference N2 - The complex questions of today for a world of tomorrow are characterized by their global impact. Solutions must therefore not only be sustainable in the sense of the three pillars of sustainability (economic, environmental, and social) but must also function globally. This goes hand in hand with the need for intercultural acceptance of developed services and products. To achieve this, engineers, as the problem solvers of the future, must be able to work in intercultural teams on appropriate solutions, and be sensitive to intercultural perspectives. To equip the engineers of the future with the so-called future skills, teaching concepts are needed in which students can acquire these methods and competencies in application-oriented formats. The presented course "Applying Design Thinking - Sustainability, Innovation and Interculturality" was developed to teach future skills from the competency areas Digital Key Competencies, Classical Competencies and Transformative Competencies. The CDIO Standard 3.0, in particular the standards 5, 6, 7 and 8, was used as a guideline. The course aims to prepare engineering students from different disciplines and cultures for their future work in an international environment by combining a digital teaching format with an interdisciplinary, transdisciplinary and intercultural setting for solving sustainability challenges. The innovative moment lies in the digital application of design thinking and the inclusion of intercultural as well as trans- and interdisciplinary perspectives in innovation development processes. In this paper, the concept of the course will be presented in detail and the particularities of a digital implementation of design thinking will be addressed. Subsequently, the potentials and challenges will be reflected and practical advice for integrating design thinking in engineering education will be given. KW - Design Thinking KW - Sustainability KW - Future Skills KW - Interculturality KW - Interdisciplinarity Y1 - 2023 N1 - Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26-29, 2023 ER - TY - CHAP A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Pütz, Sebastian A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Mertens, Alexander A1 - Nagel, Saskia K. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena ED - Brecher, Christian ED - Schuh, Günther ED - van der Alst, Wil ED - Jarke, Matthias ED - Piller, Frank T. ED - Padberg, Melanie T1 - Human-centered work design for the internet of production T2 - Internet of production - fundamentals, applications and proceedings N2 - Like all preceding transformations of the manufacturing industry, the large-scale usage of production data will reshape the role of humans within the sociotechnical production ecosystem. To ensure that this transformation creates work systems in which employees are empowered, productive, healthy, and motivated, the transformation must be guided by principles of and research on human-centered work design. Specifically, measures must be taken at all levels of work design, ranging from (1) the work tasks to (2) the working conditions to (3) the organizational level and (4) the supra-organizational level. We present selected research across all four levels that showcase the opportunities and requirements that surface when striving for human-centered work design for the Internet of Production (IoP). (1) On the work task level, we illustrate the user-centered design of human-robot collaboration (HRC) and process planning in the composite industry as well as user-centered design factors for cognitive assistance systems. (2) On the working conditions level, we present a newly developed framework for the classification of HRC workplaces. (3) Moving to the organizational level, we show how corporate data can be used to facilitate best practice sharing in production networks, and we discuss the implications of the IoP for new leadership models. Finally, (4) on the supra-organizational level, we examine overarching ethical dimensions, investigating, e.g., how the new work contexts affect our understanding of responsibility and normative values such as autonomy and privacy. Overall, these interdisciplinary research perspectives highlight the importance and necessary scope of considering the human factor in the IoP. KW - Responsibility KW - Privacy KW - Digital leadership KW - Best practice sharing KW - Cognitive assistance system KW - Human-robot collaboration KW - Human-centered work design Y1 - 2023 SN - 978-3-030-98062-7 U6 - http://dx.doi.org/10.1007/978-3-030-98062-7_19-1 N1 - Part of the book series: Interdisciplinary Excellence Accelerator Series (IDEAS) SP - 1 EP - 23 PB - Springer CY - Cham ER - TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - http://dx.doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - Proceedings of the 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany. VL - 5 IS - 1, Article number: 17 SP - 1 EP - 14 PB - Springer Nature ER - TY - JOUR A1 - Maurer, Florian A1 - Rieke, Christian A1 - Schemm, Ralf A1 - Stollenwerk, Dominik T1 - Analysis of an urban grid with high photovoltaic and e-mobility penetration JF - Energies N2 - This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub. KW - distribution grid simulation KW - smart-charging KW - e-mobility Y1 - 2023 U6 - http://dx.doi.org/10.3390/en16083380 SN - 1996-1073 N1 - This article belongs to the Special Issue "Advanced Solutions for the Efficient Integration of Electric Vehicles in Electricity Grids" N1 - Corresponding author: Florian Maurer VL - 16 IS - 8 PB - MDPI CY - Basel ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Pavese, Alberto A1 - Lanese, Igor A1 - Hoffmeister, Benno A1 - Pinkawa, Marius A1 - Vulcu, Mihai-Cristian A1 - Bursi, Oreste A1 - Nardin, Chiara A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca A1 - Fragiadakis, Michalis A1 - Weber, Felix A1 - Huber, Peter A1 - Renault, Philippe A1 - Gündel, Max A1 - Dyke, Shirley A1 - Ciucci, M. A1 - Marino, A. T1 - Seismic performance of multi-component systems in special risk industrial facilities T2 - 17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 ER - TY - CHAP A1 - Taddei, Francesca A1 - Lozana, Lara A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Papadrakakis, M. ED - Papadopoulos, V. ED - Plevris, V. T1 - Practical recommendations for the foundation design of onshore wind turbines including soil-structure interaction T2 - 5th International Conference on Computational Methods in Structural , Hersonissos, Greece Dynamics and Earthquake Engineering, COMPDYN 2015, 25.05.2015-27.05.2015, Hersonissos, Greece. Y1 - 2015 ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper T2 - 6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain Y1 - 2014 ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration control of slender structures by semi-active tuned liquid column dampers T2 - Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07 Y1 - 2013 N1 - http://www.emi2013.northwestern.edu/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=213&type=1 Seite kann nicht gefunden werden. ER - TY - CHAP A1 - Butenweg, Christoph A1 - Norda, Hannah ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Nonlinear analysis of masonry structures according to Eurocode 8 T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Churilov, Sergej A1 - Dumova-Jovanoska, Elena A1 - Butenweg, Christoph ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) N2 - A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia. Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Pütz, Sebastian A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Mertens, Alexander A1 - Rodemann, Niklas A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena T1 - An interdisciplinary view on humane interfaces for digital shadows in the internet of production T2 - 2022 15th International Conference on Human System Interaction (HSI) N2 - Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers’ capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization. KW - digital twin KW - digital shadow KW - cyber-physical production system KW - human-machine interface Y1 - 2022 SN - 978-1-6654-6823-7 (Print) SN - 978-1-6654-6822-0 (Online) U6 - http://dx.doi.org/10.1109/HSI55341.2022.9869467 SN - 2158-2246 (Print) SN - 2158-2254 (Online) N1 - 15th International Conference on Human System Interaction (HSI), 28-31 July 2022, Melbourne, Australia. PB - IEEE ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 SP - 3261 EP - 3270 ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 SP - 2747 EP - 2756 ER - TY - CHAP A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Arion, Christian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Behaviour factor q for the seismic design of URM buildings T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed. KW - unreinforced masonry buildings KW - modern constructions KW - seismic design KW - linear elastic analysis; KW - behaviour factor q Y1 - 2022 SN - 978-973-100-533-1 SP - 1184 EP - 1194 ER - TY - CHAP A1 - Tomić, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Correia, António A. A1 - Candeias, Paulo X. A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Seismic testing of adjacent interacting masonry structures T2 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020) N2 - In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the façades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the façade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25%, 50%, 75% and 100% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test Y1 - 2020 U6 - http://dx.doi.org/10.23967/sahc.2021.234 N1 - Wednesday, 16 September, 2020 to Friday, 18 September, 2020, Barcelona. SP - 1 EP - 12 ER - TY - CHAP A1 - Tomic, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Blind predictions of shake table testing of aggregate masonry buildings T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - In many historical centers in Europe, stone masonry is part of building aggregates, which developed when the layout of the city or village was densified. The analysis of such building aggregates is very challenging and modelling guidelines missing. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The SERA project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures) provides such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. With the aim to advance the modelling of unreinforced masonry aggregates, a blind prediction competition is organized before the experimental campaign. Each group has been provided a complete set of construction drawings, material properties, testing sequence and the list of measurements to be reported. The applied modelling approaches span from equivalent frame models to Finite Element models using shell elements and discrete element models with solid elements. This paper compares the first entries, regarding the modelling approaches, results in terms of base shear, roof displacements, interface openings, and the failure modes. KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test KW - Blind prediction competition Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Šakić, Bogdan A1 - Milijaš, Aleksa A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Influence of prior in-plane damage on the out-of-plane response of non-load bearing unreinforced masonry walls under seismic load T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Reinforced concrete frames with masonry infill walls are popular form of construction all over the world as well in seismic regions. While severe earthquakes can cause high level of damage of both reinforced concrete and masonry infills, earthquakes of lower to medium intensity some-times can cause significant level of damage of masonry infill walls. Especially important is the level of damage of face loaded infill masonry walls (out-of-plane direction) as out-of-plane load cannot only bring high level of damage to the wall, it can also be life-threating for the people near the wall. The response in out-of-plane direction directly depends on the prior in-plane damage, as previous investigation shown that it decreases resistance capacity of the in-fills. Behaviour of infill masonry walls with and without prior in-plane load is investigated in the experimental campaign and the results are presented in this paper. These results are later compared with analytical approaches for the out-of-plane resistance from the literature. Conclusions based on the experimental campaign on the influence of prior in-plane damage on the out-of-plane response of infill walls are compared with the conclusions from other authors who investigated the same problematic. KW - Earthquake Engineering KW - Unreinforced masonry walls KW - Out-of-plane load KW - In- plane damage KW - Out-of-plane failure Y1 - 2021 SN - 9786188507258 U6 - http://dx.doi.org/10.7712/120121.8527.18913 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 808 EP - 828 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results. KW - Seismic loading KW - Masonry infill KW - Out-of-plane load KW - Out-of-plane strength Y1 - 2021 SN - 978-618-85072-5-8 U6 - http://dx.doi.org/10.7712/120121.8528.18914 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 829 EP - 846 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Butenweg, Christoph ED - Kuzmanović, Vladan ED - Ignjatović, Ivan T1 - Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies T2 - Civil Engineering 2021 – Achievements and Visions: Proceedings of the International Conferenecs celebrating 175th Anniversary of the Faculty of Civil Engineering, University of Belgrade, October 25 – 26, 2021 Belgrade, Serbia Y1 - 2021 PB - University of Belgrade CY - Belgrade ER - TY - CHAP A1 - Milkova, Kristina A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Region-sensitive comprehensive procedure for determination of seismic fragility curves T2 - 1st Croatian Conference on Earthquake Engineering 1CroCEE 22-24 March 2021 Zagreb, Croatia N2 - Seismic vulnerability estimation of existing structures is unquestionably interesting topic of high priority, particularly after earthquake events. Having in mind the vast number of old masonry buildings in North Macedonia serving as public institutions, it is evident that the structural assessment of these buildings is an issue of great importance. In this paper, a comprehensive methodology for the development of seismic fragility curves of existing masonry buildings is presented. A scenario – based method that incorporates the knowledge of the tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity (determined via the Neo Deterministic approach) is used for calculation of the necessary response spectra. The capacity of the investigated masonry buildings has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) is used for verification of the structural safety of the structures Performance point, obtained from the intersection of the capacity of the building and the spectra used, is selected as a response parameter. The thresholds of the spectral displacement are obtained by splitting the capacity curve into five parts, utilizing empirical formulas which are represented as a function of yield displacement and ultimate displacement. As a result, four levels of damage limit states are determined. A maximum likelihood estimation procedure for the process of fragility curves determination is noted as a final step in the proposed procedure. As a result, region specific series of vulnerability curves for structures are defined. KW - seismic risk KW - seismic vulnerability KW - fragility curves KW - masonry structures Y1 - 2021 U6 - http://dx.doi.org/10.5592/CO/1CroCEE.2021.158 SP - 121 EP - 128 PB - University of Zagreb CY - Zagreb ER - TY - CHAP A1 - Balaskas, Georgios A1 - Hoffmeister, Benno A1 - Butenweg, Christoph A1 - Pilz, Marco A1 - Bauer, Anna ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Earthquake early warning and response system based on intelligent seismic and monitoring sensors embedded in a communication platform and coupled with BIM models T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - This paper describes the concept of an innovative, interdisciplinary, user-oriented earthquake warning and rapid response system coupled with a structural health monitoring system (SHM), capable to detect structural damages in real time. The novel system is based on interconnected decentralized seismic and structural health monitoring sensors. It is developed and will be exemplarily applied on critical infrastructures in Lower Rhine Region, in particular on a road bridge and within a chemical industrial facility. A communication network is responsible to exchange information between sensors and forward warnings and status reports about infrastructures’health condition to the concerned recipients (e.g., facility operators, local authorities). Safety measures such as emergency shutdowns are activated to mitigate structural damages and damage propagation. Local monitoring systems of the infrastructures are integrated in BIM models. The visualization of sensor data and the graphic representation of the detected damages provide spatial content to sensors data and serve as a useful and effective tool for the decision-making processes after an earthquake in the region under consideration. KW - early warning and response system KW - interconnected sensor systems KW - seismic structural damage detection via SHM KW - integration SHM in BIM Y1 - 2021 SN - 978-618-85072-5-8 U6 - http://dx.doi.org/10.7712/120121.8539.18855 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 987 EP - 998 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Nardin, Chiara A1 - Lanese, Igor A1 - Pavese, Alberto A1 - Marinković, Marko A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca T1 - Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities T2 - Pressure Vessels & Piping Virtual Conference July 13-15, 2021 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 SN - 9780791885352 U6 - http://dx.doi.org/10.1115/PVP2021-61696 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - CHAP A1 - Milkova, Kristina A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Methodology for development of seismic vulnerability curve for existing unreinforced Masonry buildings T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - Seismic behavior of an existing unreinforced masonry building built pre-modern code, located in the City of Ohrid, Republic of North Macedonia has been investigated in this paper. The analyzed school building is selected as an archetype in an ongoing project named “Seismic vulnerability assessment of existing masonry structures in Republic of North Macedonia (SeismoWall)”. Two independent segments were included in this research: Seismic hazard assessment by creating a cite specific response spectra and Seismic vulnerability definition by creating a region - specific series of vulnerability curves for the chosen building topology. A reliable Seismic Hazard Assessment for a selected region is a crucial point for performing a seismic risk analysis of a characteristic building class. In that manner, a scenario – based method that incorporates together the knowledge of tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity named Neo Deterministic approach is used for calculation of the response spectra for the location of the building. Variations of the rupturing process are taken into account in the nucleation point of the rupture, in the rupture velocity pattern and in the istribution of the slip on the fault. The results obtained from the multiple scenarios are obtained as an envelope of the response spectra computed for the cite using the procedure Maximum Credible Seismic Input (MCSI). Capacity of the selected building has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) was used for verification of the structural safety of the chosen unreinforced masonry structure. In the process of optimization of the number of samples, computational cost required in a Monte Carlo simulation is significantly reduced since the simulation is performed on a polynomial response surface function for prediction of the structural response. Performance point, found as the intersection of the capacity of the building and the spectra used, is chosen as a response parameter. Five levels of damage limit states based on the capacity curve of the building are defined in dependency on the yield displacement and the maximum displacement. Maximum likelihood estimation procedure is utilized in the process of vulnerability curves determination. As a result, region specific series of vulnerability curves for the chosen type of masonry structures are defined. The obtained probabilities of exceedance a specific damage states as a result from vulnerability curves are compared with the observed damages happened after the earthquake in July 2017 in the City of Ohrid, North Macedonia. KW - Masonry structures KW - Vulnerability Curves KW - Capacity Curve KW - Neo-Deterministic KW - Seismic Hazard Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Marinković, Marko A1 - Butenweg, Christoph T1 - Out-of-plane behavior of decoupled masonry infills under seismic loading T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - Masonry is used in many buildings not only for load-bearing walls, but also for non-load-bearing enclosure elements in the form of infill walls. Many studies confirmed that infill walls interact with the surrounding reinforced concrete frame, thus changing dynamic characteristics of the structure. Consequently, masonry infills cannot be neglected in the design process. However, although the relevant standards contain requirements for infill walls, they do not describe how these requirements are to be met concretely. This leads in practice to the fact that the infill walls are neither dimensioned nor constructed correctly. The evidence of this fact is confirmed by the recent earthquakes, which have led to enormous damages, sometimes followed by the total collapse of buildings and loss of human lives. Recently, the increasing effort has been dedicated to the approach of decoupling of masonry infills from the frame elements by introducing the gap in between. This helps in removing the interaction between infills and frame, but raises the question of out-of-plane stability of the panel. This paper presents the results of the experimental campaign showing the out-of-plane behavior of masonry infills decoupled with the system called INODIS (Innovative decoupled infill system), developed within the European project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings). Full scale specimens were subjected to the different loading conditions and combinations of in-plane and out-of-plane loading. Out-of-plane capacity of the masonry infills with the INODIS system is compared with traditionally constructed infills, showing that INODIS system provides reliable out-of-plane connection under various loading conditions. In contrast, traditional infills performed very poor in the case of combined and simultaneously applied in-plane and out-of-plane loading, experiencing brittle behavior under small in-plane drifts followed by high out-of-plane displacements. Decoupled infills with the INODIS system have remained stable under out-of-plane loads, even after reaching high in-plane drifts and being damaged. KW - in-plane KW - out-of-plane KW - INODIS KW - earthquake KW - connection detail Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental and numerical analysis of RC frames with decoupled masonry infills T2 - 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Masonry infill walls are commonly used in reinforced concrete (RC) frame structures, also in seismically active areas, although they often experience serious damage during earthquakes. One of the main reasons for their poor behaviour is the connection to the frame, which is usually constructed using mortar. This paper describes the novel solution for infill/frame connection based on application of elastomeric material between them. The system called INODIS (Innovative Decoupled Infill System) has the aim to postpone the activation of infill in in-plane direction and at the same time to provide sufficient out-of-plane support. First, experimental tests on infilled frame specimens are presented and the comparison of the results between traditionally infilled frames and infilled frames with the INODIS system are given. The results are then used for calibration and validation of numerical model, which can be further employed for investigating the influence of some material parameters on the behaviour of infilled frames with the INODIS system. KW - Earthquake KW - In-plane KW - Out-of-plane KW - Isolation KW - Seismic Y1 - 2019 SN - 978-618-82844-5-6 U6 - http://dx.doi.org/10.7712/120119.7088.18845 SN - 2623-3347 N1 - COMPDYN 2019, 24-26 June 2019, Crete, Greece. SP - 2464 EP - 2479 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Rajan, Sreelakshmy A1 - Kubalski, Thomas A1 - Altay, Okyay A1 - Dalguer, Luis A A1 - Butenweg, Christoph T1 - Multi-dimensional fragility analysis of a RC building with components using response surface method T2 - 24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017 N2 - Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples. Y1 - 2017 SN - 9781510856776 SP - 3126 EP - 3135 PB - International Assn for Structural Mechanics in Reactor Technology (IASMiRT) CY - Raleigh, USA ER - TY - CHAP A1 - Butenweg, Christoph A1 - Meyer, Udo A1 - Fehling, Ekkehard T1 - INSYSME: first activities of the German partners T2 - 9th International Masonry Conference 2014 in Guimaraes, Portugal, 2014 Y1 - 2014 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Rajan, Sreelakshmy T1 - Design and construction techniques of AAC masonry buildings in earthquakes regions T2 - 10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014 Y1 - 2014 ER - TY - CHAP A1 - Rosin, Julia A1 - Kubalski, Thomas A1 - Butenweg, Christoph ED - Klinkel, Sven ED - Butenweg, Christoph ED - Lin, Gao ED - Holtschoppen, Britta T1 - Seismic isolation of cylindrical liquid storage tanks T2 - Seismic design of industrial facilities N2 - Seismic excited liquid filled tanks are subjected to extreme loading due to hydrodynamic pressures, which can lead to nonlinear stability failure of the thinwalled cylindrical tanks, as it is known from past earthquakes. A significant reduction of the seismically induced loads can be obtained by the application of base isolation systems, which have to be designed carefully with respect to the modified hydrodynamic behaviour of the tank in interaction with the liquid. For this reason a highly sophisticated fluid-structure interaction model has to be applied for a realistic simulation of the overall dynamic system. In the following, such a model is presented and compared with the results of simplified mathematical models for rigidly supported tanks. Finally, it is examined to what extent a simple mechanical model can represent the behaviour of a base isolated tank in case of seismic excitation Y1 - 2013 SN - 978-3-658-02810-7 SN - 978-3-658-02809-1 SN - 978-3-658-14037-3 U6 - http://dx.doi.org/10.1007/978-3-658-02810-7_36 N1 - International Conference on Seismic Design of Industrial Facilities, Aachen, Germany, 26.-27.09.2013. https://sedif-conference.jimdofree.com/ SP - 429 EP - 440 PB - Springer Vieweg CY - Wiesbaden ER - TY - GEN A1 - Butenweg, Christoph A1 - Gellert, Christoph A1 - Reindl, Lukas A1 - Meskouris, Konstantin T1 - A nonlinear method for the seismic safety verification of masonry buildings N2 - In order for traditional masonry to stay a competitive building material in seismically active regions there is an urgent demand for modern, deformation-based verification procedures which exploit the nonlinear load bearing reserves. The Capacity Spectrum Method (CSM) is a widely accepted design approach in the field of reinforced concrete and steel construction. It compares the seismic action with the load-bearing capacity of the building considering nonlinear material behavior with its post-peak capacity. The bearing capacity of the building is calculated iteratively using single wall capacity curves. This paper presents a new approach for the bilinear approximation of single wall capacity curves in the style of EC6/EC8 respectively FEMA 306/FEMA 356 based on recent shear wall test results of the European Collective-Research Project “ESECMaSE”. The application of the CSM to masonry structures by using bilinear approximations of capacity curves as input is demonstrated on the example of a typical German residential home. Y1 - 2009 N1 - COMPDYN 2009 - 2nd International Conference on Computational Methods in Structural Dynamics & Earthquake Engineering. Isles of Rhodes, Greece, June 22-24,2009. PB - National Technical University of Athens CY - Athen ER - TY - JOUR A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Yang, J. T1 - Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls JF - Engineering Structures N2 - Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study. KW - Masonry partition walls KW - Earthquake KW - Out-of-plane capacity KW - Slab deflection Y1 - 2023 U6 - http://dx.doi.org/10.1016/j.engstruct.2022.115342 SN - 0141-0296 VL - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Ansal, Atilla T1 - Latest findings on the behaviour factor q for the seismic design of URM buildings JF - Bulletin of Earthquake Engineering N2 - Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20–0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0–3.0 are proposed. KW - Unreinforced masonry buildings KW - Modern constructions KW - Seismic design KW - Linear elastic analysis KW - Behaviour factor q Y1 - 2022 U6 - http://dx.doi.org/10.1007/s10518-022-01419-7 SN - 1573-1456 SN - 1570-761X VL - 20 IS - 11 SP - 5797 EP - 5848 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Ford, Michael C. T1 - Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading JF - Construction and Building Materials N2 - Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated. KW - Masonry infill KW - Reinforced concrete frame KW - Earthquake KW - INSYSME KW - Decoupling Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.conbuildmat.2021.126041 SN - 1879-0526 SN - 0950-0618 VL - 318 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rossi, Leonardo A1 - Winands, Mark H. M. A1 - Butenweg, Christoph ED - Zhang, Jessica T1 - Monte Carlo Tree Search as an intelligent search tool in structural design problems JF - Engineering with Computers : An International Journal for Simulation-Based Engineering N2 - Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study’s outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers. KW - Monte Carlo Tree Search KW - Structural design KW - Artificial intelligence KW - Civil engineering KW - Genetic algorithm Y1 - 2022 U6 - http://dx.doi.org/10.1007/s00366-021-01338-2 SN - 1435-5663 SN - 0177-0667 VL - 38 IS - 4 SP - 3219 EP - 3236 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Paolacci, Fabrizio A1 - Marinković, Marko A1 - Lanese, Igor A1 - Nardin, Chiara A1 - Quinci, Gianluca ED - Yang, J. T1 - Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing JF - Engineering Structures N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions. KW - Multi-storey KW - Frame structure KW - Earthquake KW - Tank KW - Piping Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.engstruct.2021.112681 SN - 0141-0296 VL - 243 IS - 15 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Butenweg, Christoph ED - Vacareanu, Radu ED - Ionescu, Constantin T1 - Seismic design and evaluation of industrial facilities T2 - Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology – Bucharest, 2022 N2 - Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage. KW - Industrial facilities KW - Seismic design KW - Tanks KW - EN 1998-4 KW - Structural health monitoring Y1 - 2022 SN - 978-3-031-15103-3 SN - 978-3-031-15106-4 SN - 978-3-031-15104-0 U6 - http://dx.doi.org/10.1007/978-3-031-15104-0 SN - 2524-342X SN - 2524-3438 N1 - Third European Conference on Earthquake Engineering and Seismology. 04-09.09 Bucharest, Romania. SP - 449 EP - 464 PB - Springer CY - Cham ER - TY - CHAP A1 - Gkatzogias, Konstantinos A1 - Veljkoviv, Ana A1 - Pohoryles, Daniel A. A1 - Tsionis, Georgios A1 - Bournas, Dionysios A. A1 - Crowley, Helen A1 - Norlén, Hedvig A1 - Butenweg, Christoph A1 - Gervasio, Helena A1 - Manfredi, Vincenzo A1 - Masi, Angelo A1 - Zaharieva, Roumiana ED - Gkatzogias, Konstantinos ED - Tsionis, Georgios T1 - Policy practice and regional impact assessment for building renovation T2 - REEBUILD Integrated Techniques for the Seismic Strengthening & Energy Efficiency of Existing Buildings N2 - The work presented in this report provides scientific support to building renovation policies in the EU by promoting a holistic point of view on the topic. Integrated renovation can be seen as a nexus between European policies on disaster resilience, energy efficiency and circularity in the building sector. An overview of policy measures for the seismic and energy upgrading of buildings across EU Member States identified only a few available measures for combined upgrading. Regulatory framework, financial instruments and digital tools similar to those for energy renovation, together with awareness and training may promote integrated renovation. A framework for regional prioritisation of building renovation was put forward, considering seismic risk, energy efficiency, and socioeconomic vulnerability independently and in an integrated way. Results indicate that prioritisation of building renovation is a multidimensional problem. Depending on priorities, different integrated indicators should be used to inform policies and accomplish the highest relative or most spread impact across different sectors. The framework was further extended to assess the impact of renovation scenarios across the EU with a focus on priority regions. Integrated renovation can provide a risk-proofed, sustainable, and inclusive built environment, presenting an economic benefit in the order of magnitude of the highest benefit among the separate interventions. Furthermore, it presents the unique capability of reducing fatalities and energy consumption at the same time and, depending on the scenario, to a greater extent. Y1 - 2022 SN - 978-92-76-60454-9 U6 - http://dx.doi.org/10.2760/883122 SN - 1831-9424 SP - 1 EP - 68 PB - Publications Office of the European Union CY - Luxembourg ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Bernhard, Sebastian A1 - Langolf, Jessica A1 - Leicht-Scholten, Carmen T1 - Managing change and acceptance of digitalization strategies - Implementing the vision of „Internet of Production“ (IoP) in existing corporate structures T2 - Textile Impulse für die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022 : 1. – 2. Dezember 2022, Eurogress Aachen N2 - The vision of the Internet of Production is to enable a new level of crossdomain collaboration by providing semantically adequate and context-aware data from production, development & usage in real-time. Y1 - 2022 SP - 153 EP - 153 ER - TY - JOUR A1 - Schüller-Ruhl, Aaron A1 - Dinstühler, Leonard A1 - Senger, Thorsten A1 - Bergfeld, Stefan A1 - Ingenhag, Christian A1 - Fleischhaker, Robert ED - Mackenzie, Jacob T1 - Direct fabrication of arbitrary phase masks in optical glass via ultra-short pulsed laser writing of refractive index modifications JF - Applied Physics B N2 - We study the possibility to fabricate an arbitrary phase mask in a one-step laser-writing process inside the volume of an optical glass substrate. We derive the phase mask from a Gerchberg–Saxton-type algorithm as an array and create each individual phase shift using a refractive index modification of variable axial length. We realize the variable axial length by superimposing refractive index modifications induced by an ultra-short pulsed laser at different focusing depth. Each single modification is created by applying 1000 pulses with 15 μJ pulse energy at 100 kHz to a fixed spot of 25 μm diameter and the focus is then shifted axially in steps of 10 μm. With several proof-of-principle examples, we show the feasibility of our method. In particular, we identify the induced refractive index change to about a value of Δn=1.5⋅10−3. We also determine our current limitations by calculating the overlap in the form of a scalar product and we discuss possible future improvements. Y1 - 2022 U6 - http://dx.doi.org/10.1007/s00340-022-07928-2 SN - 1432-0649 (Online) SN - 0946-2171 (Print) N1 - Corresponding author: Robert Fleischhaker VL - 128 IS - Article number: 208 SP - 1 EP - 11 PB - Springer CY - Berlin ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Sharma, Mamta Rameshwarlal A1 - Bleck, Wolfgang A1 - Leicht-Scholten, Carmen ED - Farn, C. K. T1 - Innovation through Diversity - Development of a Diversity and Innovation management concept T2 - International Conference on Innovation and Management : IAM23017S : Date: July 4-7, 2017, Osaka, Japan N2 - Acknowledging that a diverse workforce could be a potential source of innovation, the current research deals with the fine details of why diversity management is central to achieving innovation in heterogeneous research groups and how this could be effectively realized in an organization. The types of heterogeneities addressed mainly include gender, qualification, academic discipline and intercultural perspectives. The type of organization being dealt with in this work is a complex association of research institutes at a technical university in Germany (RWTH Aachen University), namely a 'Cluster of Excellence', whereby several institutes of the university work collaboratively in different sub-projects. The 'Cluster of Excellence' is a part of the 'Excellence Initiative' of the German federal and state governments German Research Foundation (DFG) and German Council of Science and Humanities, with the ultimate aim of promoting cutting-edge research. To support interdisciplinary collaboration and thus the performance of the cluster, the development of a diversity and innovation management concept is presently in the conceptual phase and will be described in the frame of this paper. The 3-S-Diversity Model, composed of the three elements: skills, structure and strategy, serves as a basis for the development of the concept. The proposed concept consists of six phases; the first two phases lay the ground work by developing an understanding of the status quo on the forms of diversity in the Cluster of Excellence, the type of organizational structure of the member institutes and the varieties of specialist work cultures of the same. The third and the fourth phases build up on this foundation by means of qualitative and quantitative studies. While the third phase deals with the sensitization of the management level to the close connection between diversity and innovation; the need to manage them thereafter and find tailor-made methods of doing so, the fourth phase shall mainly focus on the mindset of the employees in this regard. The fifth phase shall consolidate the learnings and the ideas developed in the course of the first four phases into an implementable strategy. The ultimate phase shall be the implementation of this concept in the Cluster. The first three phases have been accomplished successfully and the preliminary results are already available. Y1 - 2017 SN - 2218-6387 SP - Panel C PB - Kuang Hui Chiu CY - Osaka ER - TY - CHAP A1 - Striebing, Clemens A1 - Müller, Jörg A1 - Schraudner, Martina A1 - Gewinner, Irina Valerie A1 - Guerrero Morales, Patricia A1 - Hochfeld, Katharina A1 - Hoffman, Shekinah A1 - Kmec, Julie A. A1 - Nguyen, Huu Minh A1 - Schneider, Jannick A1 - Sheridan, Jennifer A1 - Steuer-Dankert, Linda A1 - Trimble O'Connor, Lindsey A1 - Vandevelde-Rougale, Agnès T1 - Promoting diversity and combatting discrimination in research organizations: a practitioner’s guide T2 - Diversity and discrimination in research organizations N2 - The essay is addressed to practitioners in research management and from academic leadership. It describes which measures can contribute to creating an inclusive climate for research teams and preventing and effectively dealing with discrimination. The practical recommendations consider the policy and organizational levels, as well as the individual perspective of research managers. Following a series of basic recommendations, six lessons learned are formulated, derived from the contributions to the edited collection on “Diversity and Discrimination in Research Organizations.” KW - Inclusive work climate KW - lessons learned KW - policy recommendations KW - recommendations for actions KW - bullying Y1 - 2022 SN - 978-1-80117-959-1 (Print) SN - 978-1-80117-956-0 (Online) U6 - http://dx.doi.org/10.1108/978-1-80117-956-020221012 SP - 421 EP - 442 PB - Emerald Publishing Limited CY - Bingley ER -