TY - CHAP A1 - Niemüller, Tim A1 - Ferrein, Alexander A1 - Beck, Daniel A1 - Lakemeyer, Gerhard T1 - Design principles of the component-based robot software framework Fawkes T2 - Simulation, Modeling, and Programming for Autonomous Robots N2 - The idea of component-based software engineering was proposed more that 40 years ago, yet only few robotics software frameworks follow these ideas. The main problem with robotics software usually is that it runs on a particular platform and transferring source code to another platform is crucial. In this paper, we present our software framework Fawkes which follows the component-based software design paradigm by featuring a clear component concept with well-defined communication interfaces. We deployed Fawkes on several different robot platforms ranging from service robots to biped soccer robots. Following the component concept with clearly defined communication interfaces shows great benefit when porting robot software from one robot to the other. Fawkes comes with a number of useful plugins for tasks like timing, logging, data visualization, software configuration, and even high-level decision making. These make it particularly easy to create and to debug productive code, shortening the typical development cycle for robot software. Y1 - 2010 U6 - https://doi.org/10.1007/978-3-642-17319-6_29 N1 - Second International Conference, SIMPAR 2010, Darmstadt, Germany, November 15-18, 2010 SP - 300 EP - 311 PB - Springer CY - Berlin ER - TY - CHAP A1 - Niemüller, Tim A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - A Lua-based behavior engine for controlling the humanoid robot Nao T2 - RoboCup 2009: Robot Soccer World Cup XIII N2 - The high-level decision making process of an autonomous robot can be seen as an hierarchically organised entity, where strategical decisions are made on the topmost layer, while the bottom layer serves as driver for the hardware. In between is a layer with monitoring and reporting functionality. In this paper we propose a behaviour engine for this middle layer which, based on formalism of hybrid state machines (HSMs), bridges the gap between high-level strategic decision making and low-level actuator control. The behaviour engine has to execute and monitor behaviours and reports status information back to the higher level. To be able to call the behaviours or skills hierarchically, we extend the model of HSMs with dependencies and sub-skills. These Skill-HSMs are implemented in the lightweight but expressive Lua scripting language which is well-suited to implement the behaviour engine on our target platform, the humanoid robot Nao. Y1 - 2010 U6 - https://doi.org/10.1007/978-3-642-11876-0_21 N1 - 13th RoboCup International Symposium, Graz, Austria, June/July, 2009 SP - 240 EP - 251 PB - Springer CY - Berlin ER - TY - JOUR A1 - Ferrein, Alexander A1 - Siebel, Nils T. A1 - Steinbauer, Gerald T1 - Hybrid control for autonomous systems — Integrating learning, deliberation and reactive control JF - Robotics and Autonomous Systems Y1 - 2010 U6 - https://doi.org/10.1016/j.robot.2010.06.003 SN - 0921-8890 VL - 58 IS - 9 SP - 1037 EP - 1038 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Leimena, W. A1 - Artmann, Gerhard A1 - Dachwald, Bernd A1 - Temiz Artmann, Aysegül A1 - Gossmann, Matthias A1 - Digel, Ilya T1 - Feasibility of an in-situ microbial decontamination of an ice-melting probe JF - Eurasian Chemico-Technological Journal N2 - Autonomous robotic systems for penetrating thick ice shells with simultaneous collecting of scientific data are very promising devices in both terrestrial (glacier, climate research) and extra-terrestrial applications. Technical challenges in development of such systems are numerous and include 3D-navigation, an appropriate energy source, motion control, etc. Not less important is the problem of forward contamination of the pristine glacial environments with microorganisms and biomolecules from the surface of the probe. This study was devoted to establishing a laboratory model for microbial contamination of a newly constructed ice-melting probe called IceMole and to analyse the viability and amount of the contaminating microorganisms as a function of distance. The used bacterial strains were Bacillus subtilis (ATCC 6051) and Escherichia coli (ATCC 11775). The main objective was development of an efficient and reliable in-situ decontamination method of the melting probe. Therefore, several chemical substances were tested in respect of their efficacy to eliminate bacteria on the surface of the melting probe at low temperature (0 - 5 °C) and at continuous dilution by melted water. Our study has shown that at least 99.9% decontamination of the IceMole can be successfully achieved by the injection of 30% (v/v) hydrogen peroxide and 3% (v/v) sodium hypochlorite into the drilling site. We were able to reproduce this result in both time-dependent and depth-dependent experiments. The sufficient amount of 30% (v/v) H₂O₂ or 3% (v/v) NaClO has been found to be approximately 18 L per cm² of the probe’s surface. Y1 - 2010 SN - 1562-3920 U6 - https://doi.org/10.18321/ectj37 VL - 12 IS - 2 SP - 145 EP - 150 PB - Institute of Combustion Problems CY - Almaty ER - TY - GEN A1 - Behbahani, Mehdi A1 - Mai, A. A1 - Waluga, C. A1 - Bergmann, B. A1 - Tran, L. A1 - Vonderstein, K. A1 - Behr, Marek A1 - Mottaghy, K. T1 - Numerical Modeling of Flow-Related Thrombus Formation under Physiological and Non-Physiological Flow Conditions T2 - Acta Physiologica N2 - Aims: Thrombotic complications due to activation of platelets and plasmatic clotting factors belong still to the most investigated topics in the field of study of patho-physiological mechanisms. Mathematical modeling of thrombotic reactions is established and validated in test cases. Aim of this study is to experimentally evaluate and computationally simulate platelets under the influence of well-defined shear flow conditions. Platelet behaviour and reactions are experimentally reproduced, measured and used for validation of the numerical simulation. Methods: A mathematical model of platelet activation, adhesion and aggregation has been implemented into a finite element CFD (Computational Fluid Dynamics) code. The approach is based on the advective and diffusive transport equations for resting platelets, activated platelets and platelet released agonists. Adhesion rates for the reactive surfaces depend on the hemocompatibility properties of the surface and the local shear rate. Experiments with citrate-anticoagulated freshly-drawn whole blood are performed in a perfusion flow chamber as well as in a system of rotating cylinders for Couette and Taylor-vortex flow. Different biomaterials are used. The activation, drop of platelet concentration, adhesion and aggregation are quantified using scanning electron microscopy (SEM) and flow cytometry. Results: Regions and flow conditions with a high potential for thrombus growth could be identified. The experiments clearly show the influence of the blood contacting material and flow properties. By means of SEM diverse platelet adhesion patterns are observed. Numerical analysis can explain the patterns and the degree of thrombus formation. Conclusion: The numerical method shows good agreement with experimental data indicating a possible prediction of initiation of activation and detection of the local adhesion areas in connection with the role of Von-Willebrand-Factor. Y1 - 2010 SN - 1748-1716 N1 - Joint Congress of the Scandinavian and German Physiological Societies, Copenhagen, Denmark, March 27-30, 2010 VL - 198 IS - Supplement 677 SP - 185 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Mai, A. A1 - Bergmann, B. A1 - Waluga, C. A1 - Behr, Marek A1 - Tran, L. A1 - Vonderstein, K. A1 - Mottaghy, K. T1 - Modeling and Numerical Simulation of Blood Damage Y1 - 2010 N1 - Posterpresentation ; Umbrella Symposium "Modelling and Simulation in Medicine, Engineering and Sciences", Forschungszentrum Jülich, January 18-20, 2010 ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Probst, M. A1 - Mai, A. A1 - Behr, Marek A1 - Tran, L. A1 - Vonderstein, K. A1 - Mottaghy, K. T1 - Numerical Prediction of Blood Damage in Biomedical Devices Y1 - 2010 N1 - Biomedica: The Life Science Summit, Aachen, Germany , 2010-03-17 - 2010-03-18 ER - TY - JOUR A1 - Probst, M. A1 - Behbahani, Mehdi A1 - Borrmann, E. A1 - Elgeti, S. A1 - Nicolai, M. A1 - Behr, Marek T1 - Hemodynamic Modeling for Numerical Analysis and Design of Medical Devices Y1 - 2010 N1 - Posterpresentation ; NIC Symposium 2010 ; 24 - 25 February 2010 Jülich, Germany ER - TY - GEN A1 - Behbahani, Mehdi A1 - Nam, J. A1 - Waluga, C. A1 - Behr, Marek A1 - Pasquali, M. A1 - Mottaghy, K. T1 - Modeling and Numerical Analysis of Platelet Activation, Adhesion and Aggregation in Artificial Organs T2 - ASAIO Journal N2 - Purpose of Study: Thrombosis-related complications are among the leading causes for morbidity and mortality in patients who depend on artificial organs. For the prediction of platelet behavior both the flow conditions inside the device and the thrombogenic properties of the blood-contacting surfaces must be considered. Platelet reactions under the influence of well-defined shear rates are experimentally evaluated and numerically simulated. The approach is intended for the analysis of VAD and oxygenator design. Methods Used: A mathematical model of platelet activation, adhesion and aggregation has been implemented into a finite element CFD (Computational Fluid Dynamics) code. The approach is based on the advective and diffusive transport equations for resting and activated platelets and platelet released agonists. Experiments with citrate-anticoagulated freshly-drawn whole blood are performed in a perfusion flow chamber as well as in a system of rotating cylinders for Couette and Taylor-vortex flow. Different biomaterials are used. The activation, adhesion and aggregation are quantified using scanning electron microscopy and flow cytometry. Summary of Results: Regions and flow conditions with a high potential for thrombus growth could be identified. The experiments clearly show the influence of the blood contacting material and governing shear rates. Numerical analysis can explain observed adhesion patterns and the degree of thrombus formation Y1 - 2010 U6 - https://doi.org/10.1097/01.mat.0000369377.65122.a3 SN - 1538-943X N1 - 56th annual conference, American Society of Artificial Organs (ASAIO), Baltimore, USA, May 27-29, 2010 VL - 56 IS - 2 SP - 85 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Jansen, S. V. A1 - Behbahani, Mehdi A1 - Laumen, M. A1 - Kaufmann, T. A1 - Hormes, M. A1 - Behr, Marek A1 - Schmitz-Rode, T. A1 - Steinseifer, U. T1 - Investigation of Steady Flow Through a Realistic Model of the Thoracic Human Aorta Using 3D Stereo PIV and CFD-Simulation JF - ASAIO Journal Y1 - 2010 U6 - https://doi.org/10.1097/01.mat.0000369377.65122.a3 N1 - American Society of Artificial Organs (ASAIO), Baltimore, USA, May 27-29, 2010 VL - 56 IS - 2 SP - 98 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -