TY - JOUR A1 - Poghossian, Arshak A1 - Schultze, J. W. A1 - Schöning, Michael Josef T1 - Multi-parameter detection of (bio-)chemical and physical quantities using an identical transducer principle JF - Sensors and Actuators B. 91 (2003), H. 1-3 Y1 - 2003 SN - 0925-4005 SP - 83 EP - 91 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Platen, J. A1 - Schöning, Michael Josef T1 - Towards self-aligned nanostructures by means of layerexpansion technique JF - Electrochimica Acta. 51 (2005), H. 5 Y1 - 2005 SN - 0013-4686 SP - 838 EP - 843 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Malzahn, K. A1 - Abouzar, Maryam H. A1 - Mehndiratta, P. A1 - Katz, E. A1 - Schöning, Michael Josef T1 - Integration of biomolecular logic gates with field-effect transducers JF - Electrochimica Acta. 56 (2011), H. 26 Y1 - 2011 SN - 0013-4686 SP - 9661 EP - 9665 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Mai, D.-T. A1 - Mourzina, Y. A1 - Schöning, Michael Josef T1 - Impedance effect of an ion-sensitive membrane: characterisation of an EMIS sensor by impedance spectroscopy, capacitance-voltage and constant-capacitance method JF - Sensors and Actuators B. 103 (2004), H. 1-2 Y1 - 2004 SN - 0925-4005 SP - 423 EP - 428 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Lüth, H. A1 - Schultze, J. W. A1 - Schöning, Michael Josef T1 - (Bio-)chemical and physical microsensor array using an identical transducer principle JF - Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz Y1 - 2001 SN - 0-08-044014-2 SP - 243 EP - 249 PB - Elsevier [u.a.] CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Poghossian, Arshak A1 - Krämer, Melina A1 - Abouzar, Maryam H. A1 - Pita, Marcos A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Interfacing of biocomputing systems with silicon chips: Enzyme logic gates based on field-effect devices JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 682 EP - 685 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane JF - Chemical Communications N2 - Capacitive field-effect sensors modified with a multi-enzyme membrane have been applied for an electronic transduction of biochemical signals processed by enzyme-based AND-Reset and OR-Reset logic gates. The local pH change at the sensor surface induced by the enzymatic reaction was used for the activation of the Reset function for the first time. Y1 - 2015 U6 - http://dx.doi.org/10.1039/C5CC01362C VL - 51 SP - 6564 EP - 6567 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Poghossian, Arshak A1 - Jablonski, Melanie A1 - Molinnus, Denise A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers JF - Frontiers in Plant Science N2 - Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases. Y1 - 2020 U6 - http://dx.doi.org/10.3389/fpls.2020.598103 VL - 11 IS - Article 598103 SP - 1 EP - 14 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Poghossian, Arshak A1 - Jablonski, Melanie A1 - Koch, Claudia A1 - Bronder, Thomas A1 - Rolka, David A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-effect biosensor using virus particles as scaffolds for enzyme immobilization JF - Biosensors and Bioelectronics N2 - A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2018.03.036 SN - 0956-5663 VL - 110 SP - 168 EP - 174 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Yeung, C.-K. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Microsensors based on ion-sensitive field-effect transistors for biomedical applications JF - Biomedizinische Technik. 49 (2004), H. 2 Y1 - 2004 SN - 0932-4666 SP - 1036 EP - 1037 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Platen, J. A1 - Schöning, Michael Josef T1 - Field-effect sensors with charged macromolecules – from micro towards nano aspects T2 - Biochemical Sensing Utilisation of Micro-and Nanotechnologies, Warschau, Nov. 2005 : Lecture Notes of the ICB Seminar / ed.: M. Mascini, W. Torbicz Y1 - 2006 SP - 74 EP - 81 PB - Polish Academy Sciences Press CY - Warsaw ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Field-effect devices for detecting cellular signals JF - Seminars in Cell & Developmental Biology. 20 (2009), H. 1 Y1 - 2009 SN - 1096-3634 SP - 41 EP - 48 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef T1 - Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation JF - Applied Physics A: Materials Science & Processing. 87 (2007), H. 3 Y1 - 2007 SN - 0947-8396 N1 - Special Issue “From Surface Science to Nanoscale Devices” SP - 517 EP - 524 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Geissler, Hanno A1 - Schöning, Michael Josef T1 - Rapid methods and sensors for milk quality monitoring and spoilage detection JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.04.040 SN - 0956-5663 VL - 140 IS - Article 111272 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Cherstvy, A. A1 - Schöning, Michael Josef T1 - Possibilities and limitations of label-free detection of DNA hybridization with field-effect based devices JF - Digest of technical papers : September 12 - 15, 2004, Rome, Italy, Pontificia Universitas Sancto Thoma Aquinate in Urbe / [conference chairperson: C. Di Natale]. Y1 - 2004 SN - 88-7621-282-5 N1 - Eurosensors ; (18, 2004, Roma) SP - 173 EP - 176 CY - Roma ER - TY - JOUR A1 - Poghossian, Arshak A1 - Cherstvy, A. A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices JF - Sensors and Actuators B. 111-112 (2005) Y1 - 2005 SN - 0925-4005 N1 - Eurosensors XVIII 2004 — The 18th European Conference on Solid-State Transducers SP - 470 EP - 480 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Mayer, Dirk A1 - Schöning, Michael Josef T1 - Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids JF - Nanoscale Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR05987E SN - 2040-3372 (E-Journal); 2040-3364 (Print) SP - 1023 EP - 1031 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - CHAP A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Schöning, Michael Josef T1 - Label-free sensing of biomolecules by their intrinsic molecular charge using field-effect devices T2 - Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13 Y1 - 2015 SN - 978-5-8084-1991-9 SP - 61 EP - 63 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Scheja, S. A1 - Wu, Chunsheng A1 - Metzger-Boddien, C. A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free Electrostatic Detection of DNA Amplification by PCR Using Capacitive Field-effect Devices T2 - Procedia Engineering N2 - A capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor modified with a positively charged weak polyelectrolyte of poly(allylamine hydrochloride) (PAH)/single-stranded probe DNA (ssDNA) bilayer has been used for a label-free electrostatic detection of pathogen-specific DNA amplification via polymerase chain reaction (PCR). The sensor is able to distinguish between positive and negative PCR solutions, to detect the existence of target DNA amplicons in PCR samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.proeng.2016.11.512 SN - 1877-7058 N1 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary VL - Vol. 168 SP - 514 EP - 517 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Berndsen, Lars A1 - Schöning, Michael Josef T1 - Chemical sensor as physical sensor: ISFET-based flowvelocity, flow-direction and diffusion-coefficient sensor JF - Sensors and Actuators B. 95 (2003), H. 1-3 Y1 - 2003 SN - 0925-4005 SP - 384 EP - 390 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Berndsen, Lars A1 - Lüth, Hans A1 - Schöning, Michael Josef T1 - Novel concepts for flow-rate and flow-direction determination by means of pH-sensitive ISFETs JF - Proceedings of SPIE. 4560 (2001) Y1 - 2001 SP - 19 EP - 27 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Berndsen, L. A1 - Schöning, Michael Josef T1 - Chemical sensor as a physical sensor: ISFET-based flowvelocity, flow-direction and diffusion-coefficient sensor JF - Book of abstracts / ed. by J. Saneistr. Y1 - 2002 SN - 80-01-02576-4 N1 - Eurosensors ; (16, 2002, Praha) SP - 649 EP - 652 PB - Czech Technical University, Faculty of Electrical Engineering, Department of Measurement CY - Prague ER - TY - JOUR A1 - Poghossian, Arshak A1 - Berndsen, L. A1 - Schultze, J. W. A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - „High order“ hybrid sensor module based on an identical transducer principle JF - Chemical and biological sensors and analytical methods : proceedings of the international symposium / Sensor, Physical Electrochemistry, and Organic and Biological Electrochemistry Divisions. Ed.: M. Butler Y1 - 2001 SN - 1-56677-351-2 N1 - International Symposium: Chemical and Biological Sensors and Analytical Methods ; (2 : 2001.) SP - 143 EP - 152 PB - Electrochemical Society CY - Pennington, NJ ER - TY - JOUR A1 - Poghossian, Arshak A1 - Berndsen, L. A1 - Lüth, H. A1 - Schultze, J. W. A1 - Schöning, Michael Josef T1 - Multi-Parameter-Detektions-System unter dem Einsatz eines einzigen Transducerprinzips sowohl für (bio-)chemische als auch physikalische Sensoren JF - Sensoren und Mess-Systeme : Vorträge der 11. ITG/GMA-Fachtagung vom 11. bis 12. März 2002 in Ludwigsburg / Veranst.: Informationstechnische Gesellschaft im VDE (ITG) ... Wiss. Tagungsleitung: C. D. Kohl .... Y1 - 2002 SN - 3-8007-2675-0 N1 - Sensoren und Mess-Systeme 2002 SP - 137 EP - 140 PB - VDE-Verl. CY - Berlin [u.a.] ER - TY - JOUR A1 - Poghossian, Arshak A1 - Baade, A. A1 - Emons, H. A1 - Schöning, Michael Josef T1 - Application of ISFET for pH measurements in rain droplets JF - Sensors and Actuators B. 76 (2001), H. 1-3 Y1 - 2001 SN - 0925-4005 SP - 634 EP - 638 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef T1 - Capacitance–voltage and impedance characteristics of field-effect EIS sensors functionalised with polyelectrolyte multilayers JF - IRBM. 29 (2008), H. 2-3 Y1 - 2008 SN - 1959-0318 SP - 149 EP - 154 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef ED - Abdelghani, Adnane ED - Schöning, Michael Josef T1 - (Bio-­)chemical sensor array based on nanoplate SOI capacitors T2 - Nanoscale Science and Technology (NS&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012 Y1 - 2012 SP - 31 EP - 31 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Sakkari, M. A1 - Kassab, T. A1 - Han, Y. A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Field-effect sensors for monitoring the layer-by-layer adsorption of charged macromolecules JF - Sensors and Actuators B: Chemical. 118 (2006), H. 1-2 Y1 - 2006 SN - 0925-4005 N1 - Eurosensors XIX - Eurosensors XIX - The 19th European Conference on Solid-State Transducers SP - 163 EP - 170 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Razavi, A. A1 - Bäcker, Matthias A1 - Bijnens, N. A1 - Williams, O. A. A1 - Haenen, K. A1 - Moritz, W. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si–SiO2 structure JF - Electrochimica Acta. 54 (2009), H. 25 Y1 - 2009 SN - 0013-4686 SP - 5981 EP - 5985 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Christiaens, P. A1 - Williams, O. A. A1 - Haenen, K. A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors JF - Journal of Contemporary Physics. 43 (2008), H. 2 Y1 - 2008 SN - 1934-9378 N1 - Armenian Academy of Sciences SP - 77 EP - 81 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Christiaens, P. A1 - Williams, O. A. A1 - Haenen, K. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Nanocrystalline diamond-based field-effect (bio-)chemical sensor JF - 8. Dresdner Sensor-Symposium : Sensoren für Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme für die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung für die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.) Y1 - 2007 SN - 978-3-940046-45-1 N1 - Dresdner Sensor-Symposium <8, 2007, Dresden> ; Dresdner Beiträge zur Sensorik ; 29 SP - 191 EP - 194 PB - TUDpress, Verl. der Wissenschaften CY - Dresden ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Amberger, F. A1 - Mayer, D. A1 - Han, Y. A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Field-effect sensors with charged macromolecules: Characterisation by capacitance–voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods JF - Biosensors and Bioelectronics. 22 (2007), H. 9-10 Y1 - 2007 SN - 0956-5663 N1 - Selected Papers from the Ninth World Congress On Biosensors. Toronto, Canada 10 - 12 May 2006, Alice X. J . Tang SP - 2100 EP - 2107 ER - TY - CHAP A1 - Platen, Johannes A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Microstructured Nanostructures – nanostructuring by means of conventional photolithography and layer-expansion technique N2 - A new and simple method for nanostructuring using conventional photolithography and layer expansion or pattern-size reduction technique is presented, which can further be applied for the fabrication of different nanostructures and nano-devices. The method is based on the conversion of a photolithographically patterned metal layer to a metal-oxide mask with improved pattern-size resolution using thermal oxidation. With this technique, the pattern size can be scaled down to several nanometer dimensions. The proposed method is experimentally demonstrated by preparing nanostructures with different configurations and layouts, like circles, rectangles, trapezoids, “fluidic-channel”-, “cantilever”- and meander-type structures. KW - Biosensor KW - Nanostructuring KW - layer expansion KW - pattern-size reduction KW - self-aligned patterning Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1477 ER - TY - CHAP A1 - Platen, J. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Präparation von selbstjustierenden Nanostrukturen mittels Schichtausdehnungstechnik T2 - Sensoren und Mess-Systeme 2006 : Vorträge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau Y1 - 2006 SN - 3-8007-2939-3 SP - 277 EP - 280 PB - VDE Verl. CY - Berlin ER - TY - JOUR A1 - Pita, Marcos A1 - Krämer, Melina A1 - Zouh, Jian A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Fernandez, Victor M. A1 - Katz, Evgeny T1 - Optoelectronic Properties of Nanostructured Ensembles Controlled by Biomolecular Logic Systems JF - ACS Nano. 10 (2008), H. 2 Y1 - 2008 SN - 1936-086X SP - 2160 EP - 2166 ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Yasemen A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate JF - Electrochimica Acta N2 - The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided. KW - Simultaneous determination KW - Enzymatic biosensor KW - Diaphorase KW - Dehydrogenase Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.07.119 SN - 0013-4686 VL - 251 SP - 256 EP - 262 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Y. A1 - Selmer, Thorsten A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Application of a portable multi-analyte biosensor for organic acid determination in silage JF - Sensors N2 - Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at −21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at −21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media. Y1 - 2018 U6 - http://dx.doi.org/10.3390/s18051470 SN - 1424-8220 VL - 18 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Pilas, Johanna A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array JF - Analytical Chemistry Y1 - 2019 U6 - http://dx.doi.org/10.1021/acs.analchem.9b04481 VL - 91 IS - 23 SP - 15293 EP - 15299 PB - ACS Publications CY - Washington ER - TY - JOUR A1 - Pilas, Johanna A1 - Mariano, K. A1 - Keusgen, M. A1 - Selmer, Thorsten A1 - Schöning, Michael Josef T1 - Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes JF - Procedia Engineering Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.702 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 532 EP - 535 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pilas, Johanna A1 - Iken, Heiko A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development of a multi‐parameter sensor chip for the simultaneous detection of organic compounds in biogas processes JF - Physica status solidi (a) N2 - An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431894 SN - 1862-6319 VL - 212 IS - 6 SP - 1306 EP - 1312 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Paczkowski, Sebastian A1 - Weißbecker, Bernhard A1 - Schöning, Michael Josef A1 - Schütz, Stefan T1 - Biosensors on the Basis of Insect Olfaction JF - Insect biotechnology / Andreas Vilcinskas, ed. Y1 - 2011 SN - 978-90-481-9640-1 N1 - Biologically-inspired system ; 2 SP - 225 EP - 240 PB - Springer CY - Dordrecht [u.a.] ER - TY - JOUR A1 - Oliveira, Danilo A. A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Siqueira Jr, José R. A1 - Schöning, Michael Josef T1 - Biosensor Based on Self-Assembled Films of Graphene Oxide and Polyaniline Using a Field-Effect Device Platform JF - physica status solidi (a) applications and materials science N2 - A new functionalization method to modify capacitive electrolyte–insulator–semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS–nanofilm–enzyme) of around 15% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS–enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability. KW - capacitive electrolyte–insulator–semiconductor sensors KW - graphene oxide KW - layer-by-layer technique KW - nanomaterials KW - polyaniline Y1 - 2021 U6 - http://dx.doi.org/10.1002/pssa.202000747 SN - 1862-6319 N1 - Corresponding author: José R. Siqueira Jr & Michael J. Schöning VL - 218 IS - 13 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Oberländer, Jan A1 - Reisert, Steffen A1 - Kirchner, Patrick A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Kalorimetrische Gassensoren zur H2O2-Detektion in aseptischen Sterilisationsprozessen T2 - 11. Dresdner Sensor-Symposium : 9.-11.12.2013 Y1 - 2013 SN - 978-3-9813484-5-3 SP - 234 EP - 238 ER - TY - JOUR A1 - Oberländer, Jan A1 - Mayer, Marlena A1 - Greeff, Anton A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes JF - Biosensors and Bioelectronics N2 - In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2017.12.045 SN - 0956-5663 VL - 104 SP - 87 EP - 94 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials JF - Electrochimica Acta N2 - The sterilization of packages in aseptic food processes is highly significant to maintain a consumer-safe product with extended shelf-life. Today, the sterilization of food packages is predominantly accomplished by gaseous hydrogen peroxide (H2O2) in combination with heat. In order to monitor this sterilization process, calorimetric gas sensors as differential set-up of two platinum temperature sensors representing a catalytically active (additionally deposition of MnO2) and a passive segment have been recently developed. The temperature rise of the exothermic decomposition serves as an indicator of the present H2O2 concentration. In the present work, a theoretical approach considering the sensor’s thermochemistry and physical transport phenomena was formulated to evaluate the temperature rise based on the energy content of gaseous H2O2. In a further part of this work, three polymers have been analyzed with respect to their application as passivation materials. The examined polymers are photoresist SU-8, perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). Thermal analyses by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been conducted to determine the operation limits of the polymers. The overall chemical resistance and stability of the polymers against the harsh environmental conditions during the sterilization process have been examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.electacta.2015.06.126 SN - 0013-4686 VL - 183 SP - 130 EP - 136 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Flexible polyimide-based calorimetric gas sensors for monitoring hy-drogen peroxide in sterilisation processes of aseptic filling machines T2 - Sensoren und Messsysteme 2014 ; Beiträge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in Nürnberg. (ITG-Fachbericht ; 250) Y1 - 2014 SN - 978-3-8007-3622-5 SP - 1 EP - 4 PB - VDE-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Boyen, Hans-Gerd A1 - Schöning, Michael Josef T1 - Detection of hydrogen peroxide vapor by use of manganese(IV) oxide as catalyst for calorimetric gas sensors JF - Physica status solidi A: Applications and materials science N2 - In this work, the catalyst manganese(IV) oxide (MnO2), of calorimetric gas sensors (to monitor the sterilization agent vaporized hydrogen peroxide) has been investigated in more detail. Chemical analyses by means of X-ray-induced photoelectron spectroscopy have been performed to unravel the surface chemistry prior and after exposure to hydrogen peroxide vapor at elevated temperature, as applied in the sterilization processes of beverage cartons. The surface characterization reveals a change in oxidation states of the metal oxide catalyst after exposure to hydrogen peroxide. Additionally, a cleaning effect of the catalyst, which itself is attached to the sensor surface by means of a polymer interlayer, could be observed. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330359 SN - 1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1372 EP - 1376 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Oberländer, Jan A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Wendeler, Luisa A1 - Bromm, Alexander A1 - Iken, Heiko A1 - Wagner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Study of Interdigitated Electrode Arrays Using Experiments and Finite Element Models for the Evaluation of Sterilization Processes JF - Sensors N2 - In this work, a sensor to evaluate sterilization processes with hydrogen peroxide vapor has been characterized. Experimental, analytical and numerical methods were applied to evaluate and study the sensor behavior. The sensor set-up is based on planar interdigitated electrodes. The interdigitated electrode structure consists of 614 electrode fingers spanning over a total sensing area of 20 mm2. Sensor measurements were conducted with and without microbiological spores as well as after an industrial sterilization protocol. The measurements were verified using an analytical expression based on a first-order elliptical integral. A model based on the finite element method with periodic boundary conditions in two dimensions was developed and utilized to validate the experimental findings. Y1 - 2015 U6 - http://dx.doi.org/10.3390/s151026115 SN - 1424-8220 N1 - This article belongs to the Special Issue "Gas Sensors—Designs and Applications" VL - 15 IS - 10 SP - 26115 EP - 26127 PB - MDPI CY - Basel ER - TY - CHAP A1 - Oberländer, Jan A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Wendeler, Luisa A1 - Bromm, Alexander A1 - Iken, Heiko A1 - Wagner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Experimental and numerical evaluation of interdigitated electrode array for monitoring gaseous sterilization processes T2 - 12. Dresdner Sensor-Symposium 2015 Y1 - 2015 U6 - http://dx.doi.org/10.5162/12dss2015/P3.11 SP - 163 EP - 168 ER - TY - JOUR A1 - Oberländer, Jan A1 - Bromm, Alexander A1 - Wendeler, Luisa A1 - Iken, Heiko A1 - Palomar Duran, Marlena A1 - Greeff, Anton A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines JF - Physica status solidi (a) N2 - Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431900 SN - 1862-6319 VL - 212 IS - 6 SP - 1299 EP - 1305 PB - Wiley CY - Weinheim ER -