TY - CHAP A1 - Srivastava, Alok A1 - Singh, Virendra A1 - Dhand, Chetna A1 - Kaur, Manindar A1 - Singh, Tejvir A1 - Witte, Katrin A1 - Scherer, Ulrich W. T1 - Study of swift heavy ion modified conduction polymer composites for application as gas sensor N2 - A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas. KW - Biosensor KW - Conducing polymer KW - ammonia gas sensors KW - swift heavy ions KW - polymer composites Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1345 ER - TY - CHAP A1 - Pijanowska, Dorota G. A1 - Remiszewska, Elzbieta A1 - Pederzolli, Cecilia A1 - Lunelli, Lorenzo A1 - Vendano, Michele A1 - Canteri, Roberto A1 - Dudzinski, Konrad A1 - Kruk, Jerzy A1 - Torbicz, Wladyslaw T1 - Surface modification for microreactor fabrication N2 - In this paper, methods of surface modification of different supports, i.e. glass and polymeric beads for enzyme immobilisation are described. The developed method of enzyme immobilisation is based on Schiff’s base formation between the amino groups on the enzyme surface and the aldehyde groups on the chemically modified surface of the supports. The surface of silicon modified by APTS and GOPS with immobilised enzyme was characterised by atomic force microscopy (AFM), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and infrared spectroscopy (FTIR). The supports with immobilised enzyme (urease) were also tested in combination with microreactors fabricated in silicon and Perspex, operating in a flow-through system. For microreactors filled with urease immobilised on glass beads (Sigma) and on polymeric beads (PAN), a very high and stable signal (pH change) was obtained. The developed method of urease immobilisation can be stated to be very effective. KW - Biosensor KW - Microreactors KW - surface modification KW - enzyme immobilisation KW - lab-on-a-chip Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1480 ER - TY - CHAP A1 - Kloock, Joachim P. A1 - Schubert, J. A1 - Ermelenko, Y. A1 - Vlasov, Y. G. A1 - Bratov, A. A1 - Schöning, Michael Josef T1 - Thin-film sensors with chalcogenide glass materials – a general survey T2 - Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ... Y1 - 2006 SP - 92 EP - 97 CY - Warsaw ER - TY - CHAP A1 - Koplin, Tobias J. A1 - Siemons, Maike A1 - Océn-Valéntin, César A1 - Sanders, Daniel A1 - Simon, Ulrich T1 - Workflow for high throughput screening of gas sensing materials N2 - The workflow of a high throughput screening setup for the rapid identification of new and improved sensor materials is presented. The polyol method was applied to prepare nanoparticular metal oxides as base materials, which were functionalised by surface doping. Using multi-electrode substrates and high throughput impedance spectroscopy (HT-IS) a wide range of materials could be screened in a short time. Applying HT-IS in search of new selective gas sensing materials a NO2-tolerant NO sensing material with reduced sensitivities towards other test gases was identified based on iridium doped zinc oxide. Analogous behaviour was observed for iridium doped indium oxide. KW - Biosensor KW - High throughput experimentation KW - gas sensor KW - metal oxide KW - doping KW - impedance spectroscopy KW - nitrogen oxides Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1407 ER -