TY - CHAP A1 - Tran, Thanh Ngoc A1 - Staat, Manfred T1 - Shakedown analysis of two dimensional structures by an edge-based smoothed finite element method Y1 - 2010 N1 - 4th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems in Engineering), ECCOMAS ECCM 2010, Paris, France, May 17 – 21, 2010 ER - TY - JOUR A1 - Ullrich, Sebastian A1 - Grottke, Oliver A1 - Rossaint, Rolf A1 - Staat, Manfred A1 - Deserno, Thomas M. A1 - Kuhlen, Torsten T1 - Virtual Needle Simulation with Haptics for Regional Anaesthesia Y1 - 2010 N1 - IEEE Virtual Reality 2010, Workshop on Medical Virtual Environments, Waltham, MA, USA, March 21, 2010 ER - TY - JOUR A1 - Grottke, O. A1 - Braunschweig, T. A1 - Philippen, B. A1 - Gatzweiler, Karl-Heinz A1 - Gronloh, N. A1 - Staat, Manfred A1 - Rossaint, R. A1 - Tolba, R. T1 - A new model for blunt liver injuries in the swine JF - European Surgical Research N2 - Background: To elaborate the impact of new haemostatic agents we developed an instrument for the pressure-controlled induction of blunt liver injuries in a porcine animal model. Materials and Methods: A dilutional coagulopathy of 80% of animal blood volume was induced in 9 anaesthetized pigs. Animals were randomly assigned to be injured with a force of 112 Newton (N) (n = 1), 224 ± 19 N (n = 4) or 355 ± 35 N (n = 4). The impact of injury was measured by blood loss, survival time and coagulation parameters. Liver histology was obtained to evaluate the degree of liver injury. Results: The profound haemodilution resulted in a significant alteration of all coagulation parameters. After inflicting the injury with 355 ± 35 N, both the survival time (30 ± 9 min; p = 0.006) and blood loss (68 ± 16 ml min–1, p = 0.002) were significantly different as compared to injuries with 224 ± 19 N (survival time: 76 ± 20 min, blood loss: 23 ± 4 ml min–1). In contrast, an injury with 112 N led to an insignificant blood loss of only 239 ml. Conclusion: We developed a pressure-controlled clamp that allows for the induction of blunt liver traumas with highly reproducible injuries with a positive correlation with blood loss and survival. Y1 - 2010 U6 - https://doi.org/10.1159/000265053 SN - 1421-9921 VL - 44 IS - 2 SP - 65 EP - 73 PB - Karger CY - Basel ER - TY - CHAP A1 - Digel, Ilya A1 - Leimena, W. A1 - Dachwald, Bernd A1 - Linder, Peter A1 - Porst, Dariusz A1 - Kayser, Peter A1 - Funke, O. A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - In-situ biological decontamination of an ice melting probe : [abstract] N2 - The objective of our study was to investigate the efficacy of different in-situ decontamination protocols in the conditions of thermo-mechanical ice-melting. KW - Sonde KW - Dekontamination KW - Wasserstoffperoxid KW - Natriumhypochlorit Y1 - 2010 ER - TY - CHAP A1 - Artmann, Gerhard A1 - Stadler, Andreas M. A1 - Embs, Jan P. A1 - Zaccai, Giuseppe A1 - Büldt, Georg A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - The crucial role of water in a phase transition of hemoglobin at body temperature : [abstract] N2 - The observation of a temperature transition of hemoglobin occurring at a critical temperature close to body temperature KW - Hämoglobin KW - Erythrozyt KW - Körpertemperatur Y1 - 2010 ER - TY - CHAP A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Demirci, Taylan A1 - Gierkowski, Jessica R. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract] N2 - In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension. KW - Endothelzelle KW - Sepsis KW - kontraktile Spannung KW - rhAPC KW - contractile tension KW - rhAPC KW - celldrum technology Y1 - 2010 ER - TY - JOUR A1 - Zhubanova, Azhar A. A1 - Aknazarov, S. K. A1 - Mansurov, Zulkhair A1 - Digel, Ilya A1 - Kozhalakova, A. A. A1 - Akimbekov, Nuraly S. A1 - O'Heras, Carlos A1 - Tazhibayeva, S. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Adsorption of bacterial Lipopolysaccharides and blood plasma proteins on modified carbonized materials N2 - Bacterial lipopolysaccharides (endotoxins) show strong biological effects at very low concentrations in human beings and many animals when entering the blood stream. These include affecting structure and function of organs and cells, changing metabolic functions, raising body temperature, triggering the coagulation cascade, modifying hemodynamics and causing septic shock. Because of this toxicity, the removal of even minute amounts is essential for safe parenteral administration of drugs and also for septic shock patients' care. The absence of a general method for endotoxin removal from liquid interfaces urgently requires finding new methods and materials to overcome this gap. Nanostructured carbonized plant parts is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study was comparative measurement of endotoxin- and blood proteins-related adsorption rate and adsorption capacity for different carboneous materials produced at different temperatures and under different surface modifications. As a main surface modificator, positively cbarged polymer, polyethileneimine (PEl) was used. Activated carbon materials showed good adsorption properties for LPS and some proteins used in the experiments. During the batch experiments, several techniques (dust removal, autoclaving) were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. Modification of the surface apparently has not affected hemoglobin binding to the adsorbent's surface. Obtained adsorption isotherms can be used as a powerful tool for designing of future column-based setups for blood purification from LPS, which is especially important for septic shock treatment. KW - Kohlenstofffaser KW - Lipopolysaccharide KW - nanostrukturierte carbonisierte Pflanzenteile KW - lipopolysaccharides KW - nanostructured carbonized plant parts Y1 - 2010 ER -