TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Jablonski, Melanie A1 - Kipp, Carina Ronja A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Selmer, Thorsten A1 - Siegert, Petra T1 - Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase JF - RSC Advances N2 - α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated. Y1 - 2020 U6 - http://dx.doi.org/10.1039/D0RA02066D SN - 2046-2069 VL - 10 SP - 12206 EP - 12216 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Vahidpour, Farnoosh A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide JF - Sensor and Actuators A: Physical N2 - Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor–pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.sna.2019.111691 SN - 0924-4247 VL - 303 IS - 111691 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pilas, Johanna A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array JF - Analytical Chemistry Y1 - 2019 U6 - http://dx.doi.org/10.1021/acs.analchem.9b04481 VL - 91 IS - 23 SP - 15293 EP - 15299 PB - ACS Publications CY - Washington ER - TY - JOUR A1 - Karschuck, T. L. A1 - Filipov, Y. A1 - Bollella, P. A1 - Schöning, Michael Josef A1 - Katz, E. T1 - Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction JF - International Journal of Unconventional Computing N2 - Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular “toolbox” as a new example of Boolean logic gates based on enzyme reactions. Y1 - 2019 SN - 1548-7199 VL - 14 IS - 3-4 SP - 235 EP - 242 PB - Old City Publishing CY - Philadelphia ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Wagner, Torsten A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria JF - Sensors N2 - Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process. Y1 - 2019 U6 - http://dx.doi.org/10.3390/s19214692 SN - 1424-8220 VL - 19 IS - 21 PB - MDPI CY - Basel ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.111628 SN - 0956-5663 VL - 143 IS - 111628 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Baltes, Klaus A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide – numerical modeling and experimental results JF - International Journal of Heat and Mass Transfer N2 - Hydrogen peroxide (H2O2) is a typical surface sterilization agent for packaging materials used in the pharmaceutical, food and beverage industries. We use the finite-elements method to analyze the conceptual design of an in-line thermal evaporation unit to produce a heated gas mixture of air and evaporated H2O2 solution. For the numerical model, the required phase-transition variables of pure H2O2 solution and of the aerosol mixture are acquired from vapor-liquid equilibrium (VLE) diagrams derived from vapor-pressure formulations. This work combines homogeneous single-phase turbulent flow with heat-transfer physics to describe the operation of the evaporation unit. We introduce the apparent heat-capacity concept to approximate the non-isothermal phase-transition process of the H2O2-containing aerosol. Empirical and analytical functions are defined to represent the temperature- and pressure-dependent material properties of the aqueous H2O2 solution, the aerosol and the gas mixture. To validate the numerical model, the simulation results are compared to experimental data on the heating power required to produce the gas mixture. This shows good agreement with the deviations below 10%. Experimental observations on the formation of deposits due to the evaporation of stabilized H2O2 solution fits the prediction made from simulation results. Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118519 SN - 0017-9310 VL - 143 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Poghossian, Arshak A1 - Miyamoto, K.I. A1 - Werner, C.F. A1 - Krause, S. A1 - Yoshinobu, T. T1 - Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging T2 - Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7 Y1 - 2018 SN - 9780128097397 SP - 295 EP - 308 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Effect of plasma treatment on the sensor properties of a light‐addressable potentiometric sensor (LAPS) JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment. Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900259 SN - 1862-6319 N1 - Corresponding author: Torsten Wagner VL - 216 IS - 20 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Iken, Heiko A1 - Bronder, Thomas A1 - Goretzki, Alexander A1 - Kriesel, Jana A1 - Ahlborn, Kristina A1 - Gerlach, Frank A1 - Vonau, Winfried A1 - Zander, Willi A1 - Schubert, Jürgen A1 - Schöning, Michael Josef T1 - Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor JF - physica status solidi a : applications and materials sciences Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900114 SN - 1862-6319 VL - 216 IS - 12 SP - 1 EP - 8 PB - Wiley CY - Weinheim ER -