TY - JOUR A1 - Ketelhut, Maike A1 - Kolditz, Melanie A1 - Göll, Fabian A1 - Braunstein, Bjoern A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Admittance control of an industrial robot during resistance training JF - IFAC-PapersOnLine N2 - Neuromuscular strength training of the leg extensor muscles plays an important role in the rehabilitation and prevention of age and wealth related diseases. In this paper, we focus on the design and implementation of a Cartesian admittance control scheme for isotonic training, i.e. leg extension and flexion against a predefined weight. For preliminary testing and validation of the designed algorithm an experimental research and development platform consisting of an industrial robot and a force plate mounted at its end-effector has been used. Linear, diagonal and arbitrary two-dimensional motion trajectories with different weights for the leg extension and flexion part are applied. The proposed algorithm is easily adaptable to trajectories consisting of arbitrary six-dimensional poses and allows the implementation of individualized trajectories. KW - Assistive technology KW - Rehabilitation engineering KW - Human-Computer interaction KW - Automatic control Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.ifacol.2019.12.102 SN - 2405-8963 N1 - 14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Systems HMS 2019 Tallinn, Estonia, 16–91 September 2019 VL - 52 IS - 19 SP - 223 EP - 228 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kezerashvili, Roman Ya A1 - Dachwald, Bernd T1 - Preface: Solar sailing: Concepts, technology, and missions II JF - Advances in Space Research Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.asr.2021.01.037 SN - 0273-1177 VL - 67 IS - 9 SP - 2559 EP - 2560 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Knott, Thomas C. A1 - Sofronia, Raluca E. A1 - Gerressen, Marcus A1 - Law, Yuen A1 - Davidescu, Arjana A1 - Savii, George G. A1 - Gatzweiler, Karl-Heinz A1 - Staat, Manfred A1 - Kuhlen, Torsten W. T1 - Preliminary bone sawing model for a virtual reality-based training simulator of bilateral sagittal split osteotomy T2 - Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789) N2 - Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted. KW - Bone sawing KW - virtual reality KW - training simulator Y1 - 2014 SN - 978-3-319-12057-7 (Online) SN - 978-3-319-12056-0 (Print) U6 - http://dx.doi.org/10.1007/978-3-319-12057-7_1 SP - 1 EP - 10 PB - Springer CY - Cham ER - TY - JOUR A1 - Knox, Ronald A1 - Bruggemann, Andrea A1 - Gossmann, Matthias A1 - Thomas, Ulrich A1 - Horváth, András A1 - Dragicevic, Elena A1 - Stoelzle-Feix, Sonja A1 - Fertig, Niels A1 - Jung, Alexander A1 - Raman, Aravind Hariharan A1 - Staat, Manfred A1 - Linder, Peter T1 - Combining physiological relevance and throughput for in vitro cardiac contractility measurement JF - Biophysical Journal N2 - Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.bpj.2019.11.3104 SN - 0006-3495 N1 - Raman, Arayind Hariharan im Artikel unter dem Namen: Raman, Alexander H. VL - 118 IS - Issue 3, Supplement 1 SP - 570a PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kodomskoi, Leonid A1 - Kotliar, Konstantin A1 - Schröder, Andreas A1 - Weiss, Michael A1 - Hille, Konrad T1 - Suture-Probe Canaloplasty as an Alternative to Canaloplasty using the iTrack™ Microcatheter JF - Journal of Glaucoma Y1 - 2019 U6 - http://dx.doi.org/10.1097/IJG.0000000000001321 SN - 1057-0829 IS - Epub ahead of print PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Abel, Dirk A1 - Fasse, Alessandro A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Evaluation of foot position and orientation as manipulated variables to control external knee adduction moments in leg extension training JF - Computer methods and programs in biomedicine N2 - Background and Objective Effective leg extension training at a leg press requires high forces, which need to be controlled to avoid training-induced damage. In order to avoid high external knee adduction moments, which are one reason for unphysiological loadings on knee joint structures, both training movements and the whole reaction force vector need to be observed. In this study, the applicability of lateral and medial changes in foot orientation and position as possible manipulated variables to control external knee adduction moments is investigated. As secondary parameters both the medio-lateral position of the center of pressure and the frontal-plane orientation of the reaction force vector are analyzed. Methods Knee adduction moments are estimated using a dynamic model of the musculoskeletal system together with the measured reaction force vector and the motion of the subject by solving the inverse kinematic and dynamic problem. Six different foot conditions with varying positions and orientations of the foot in a static leg press are evaluated and compared to a neutral foot position. Results Both lateral and medial wedges under the foot and medial and lateral shifts of the foot can influence external knee adduction moments in the presented study with six healthy subjects. Different effects are observed with the varying conditions: the pose of the leg is changed and the direction and center of pressure of the reaction force vector is influenced. Each effect results in a different direction or center of pressure of the reaction force vector. Conclusions The results allow the conclusion that foot position and orientation can be used as manipulated variables in a control loop to actively control knee adduction moments in leg extension training. KW - External knee adduction moments KW - Manipulated variables KW - Inverse dynamic problem KW - Inverse kinematic problem KW - Musculoskeletal model Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.cmpb.2016.09.005 SN - 0169-2607 N1 - Part of special issue: "SI: Personalised Models and System Identification" VL - 171 SP - 81 EP - 86 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Fasse, Alessandro A1 - Brüggemann, Gert-Peter A1 - Abel, Dirk A1 - Albracht, Kirsten T1 - Simulative Analysis of Joint Loading During Leg Press Exercise for Control Applications T2 - IFAC-PapersOnLine Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.ifacol.2015.10.179 N1 - IFAC-PapersOnLine 48-20; Conference Paper Archive VL - 48 IS - 20 SP - 435 EP - 440 ER - TY - CHAP A1 - Kolditz, Melanie A1 - Albracht, Kirsten A1 - Fasse, Alessandro A1 - Albin, Thivaharan A1 - Brüggemann, Gert-Peter A1 - Abel, Dirk T1 - Evaluation of an industrial robot as a leg press training device T2 - XV International Symposium on Computer Simulation in Biomechanics July 9th – 11th 2015, Edinburgh, UK Y1 - 2015 SP - 41 EP - 42 ER - TY - CHAP A1 - Konstantinidis, K. A1 - Dachwald, Bernd A1 - Ohndorf, A. A1 - Dykta, P. A1 - Voigt, K. A1 - Förstner, R. T1 - Enceladus explorer (ENEX): A lander mission to probe subglacial water pockets on Saturn's moon enceladus for life T2 - 64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2) Y1 - 2013 SN - 978-1-62993-909-4 SP - 1340 EP - 1350 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Konstantinidis, K. A1 - Kowalski, Julia A1 - Martinez, C. F. A1 - Dachwald, Bernd A1 - Ewerhart, D. A1 - Förstner, R. T1 - Some necessary technologies for in-situ astrobiology on enceladus T2 - Proceedings of the International Astronautical Congress Y1 - 2015 SN - 978-151081893-4 N1 - 6th International Astronautical Congress 2015: Space - The Gateway for Mankind's Future, IAC 2015; Jerusalem; Israel; 12 October 2015 through 16 October 2015 SP - 1354 EP - 1372 ER -