TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Saklamaz, Ali A1 - Comlekci, Abdurrahman A1 - Caliskan, Sezer T1 - The beneficial effects of lipid-lowering drugs beyond lipid-lowering effects: A comparative study with pravastatin, atorvastatin, and fenofibrate in patients with type IIa and type IIb hyperlipidemia / Saklamaz, Ali ; Comlekci, Abdurrahman ; Temiz, Aysegu JF - Metabolism. 54 (2005), H. 5 Y1 - 2005 SN - 0026-0495 SP - 677 EP - 681 ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Resmi, Halil A1 - Akhunlar, Hülya A1 - Güner, Gül T1 - In vitro effects of high glucose concentrations on membrane protein sulfhydryl oxidation, G-actin and deformability of human erythrocytes. Resmi, Halil ; Akhunlar, Hülya ; Temiz Artmann, Aysegül ; Güner, Gül JF - Cell biochemistry and function. 23 (2005), H. 3 Y1 - 2005 SN - 0263-6484 SP - 163 EP - 168 ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Linder, Peter A1 - Kayser, Peter A1 - Digel, Ilya T1 - NMR in vitro effects on proliferation, apoptosis, and viability of human chondrocytes and osteoblasts JF - Methods and findings in Experimental and Clinical Pharmacology. 27 (2005), H. 6 Y1 - 2005 SN - 0379-0355 SP - 391 EP - 394 ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Kurulgan demirci, Eylem A1 - Fırat, Ipek Seda A1 - Oflaz, Hakan A1 - Artmann, Gerhard T1 - Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers JF - SHOCK KW - Septic cardiomyopathy KW - LPS KW - cardiomyocyte biomechanics KW - CellDrum KW - actin cytoskeleton Y1 - 2021 U6 - https://doi.org/10.1097/SHK.0000000000001845 SN - 1540-0514 PB - Wolters Kluwer CY - Köln ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Kayser, Peter T1 - Why is Sepsis an Ongoing Clinical Challenge? Lipopolysaccharide Effects on Red Blood Cell Volume / Temiz, Aysegül ; Kayser, Peter JF - Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.) Y1 - 2008 SN - 978-3-540-75408-4 SP - 497 EP - 508 PB - Springer CY - Berlin ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Kayatekin, Muammer B. A1 - Uysal, N. A1 - Resmi, H. T1 - Does antioxidant supplementation alter the effects of acute exercise on erythrocyte aggregation, deformability and endothelium adhesion in untrained rats? Kayatekin, Muammer B.; Uysal N.; Resmi, H.; Bediz, Seref C.; Temiz Artmann, A.; Genç, S.; Tugyan, K. JF - International Journal for Vitamin and Nutrition Research. 75 (2005), H. 4 Y1 - 2005 SN - 0300-9831 SP - 243 EP - 250 ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Cavdar, C. A1 - Yenicerioglu, Y. A1 - Caliskan, S. T1 - The effects of intravenous iron treatment on oxidant stress and erythrocyte deformability in haemodialysis patients. Cavdar, C.; Temiz, A.; Yenicerioglu, Y.; Caliskan, S.; Celik, A.; Sifil, A.; Onvural, B.; Camsari, T. JF - Scandinavian Journal of Urology and Nephrology. 37 (2003), H. 1 Y1 - 2003 SN - 0036-5599 SP - 77 EP - 82 ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Akhisaroglu, M. A1 - Sercan, Z. A1 - Kayatekin, B. M. T1 - Adhesion of Erythrocytes to Endothelial Cells After Acute Exercise: Differences in Red Blood Cells from Juvenile and Adult Rats. Temiz Artmann, A.; Akhisaroglu, M.; Sercan, Z.; Kayatekin, BM.; Yorukoglu, K.; Kirkali, G. JF - Physiological Research (2005) Y1 - 2005 SN - 0862-8408 N1 - pre-press article ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Göll, Fabian A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Recovery from achilles tendon repair: a combination of Postsurgery Outcomes and Insufficient remodeling of muscle and tendon JF - Medicine & Science in Sports & Exercise N2 - Achilles tendon rupture (ATR) patients have persistent functional deficits in the triceps surae muscle–tendon unit (MTU). The complex remodeling of the MTU accompanying these deficits remains poorly understood. The purpose of the present study was to associate in vivo and in silico data to investigate the relations between changes inMTU properties and strength deficits inATR patients. Methods: Elevenmale subjects who had undergone surgical repair of complete unilateral ATR were examined 4.6 ± 2.0 (mean ± SD) yr after rupture. Gastrocnemius medialis (GM) tendon stiffness, morphology, and muscle architecture were determined using ultrasonography. The force–length relation of the plantar flexor muscles was assessed at five ankle joint angles. In addition, simulations (OpenSim) of the GM MTU force–length properties were performed with various iterations of MTU properties found between the unaffected and the affected side. Results: The affected side of the patients displayed a longer, larger, and stiffer GM tendon (13% ± 10%, 105% ± 28%, and 54% ± 24%, respectively) compared with the unaffected side. The GM muscle fascicles of the affected side were shorter (32% ± 12%) and with greater pennation angles (31% ± 26%). A mean deficit in plantarflexion moment of 31% ± 10% was measured. Simulations indicate that pairing an intact muscle with a longer tendon shifts the optimal angular range of peak force outside physiological angular ranges, whereas the shorter muscle fascicles and tendon stiffening seen in the affected side decrease this shift, albeit incompletely. Conclusions: These results suggest that the substantial changes in MTU properties found in ATR patients may partly result from compensatory remodeling, although this process appears insufficient to fully restore muscle function. KW - Tendon Rupture KW - Stiffness KW - Simulation KW - Muscle Force KW - Muscle Fascicle Y1 - 2021 U6 - https://doi.org/10.1249/MSS.0000000000002592 SN - 1530-0315 VL - 53 IS - 7 SP - 1356 EP - 1366 PB - American College of Sports Medicine CY - Philadelphia, Pa. ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking JF - Frontiers in Physiology N2 - Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s–1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task. KW - tendon rupture KW - muscle fascicle behavior KW - walking gait KW - force generation KW - ultrasound imaging Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.792576 SN - 1664-042X VL - 13 PB - Frontiers Research Foundation CY - Lausanne ER -