TY - CHAP A1 - Haugg, Albert Thomas A1 - Kreyer, Jörg A1 - Kemper, Hans A1 - Hatesuer, Katerina A1 - Esch, Thomas T1 - Heat exchanger for ORC. adaptability and optimisation potentials T2 - IIR International Rankine 2020 Conference N2 - The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine’s cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine. Y1 - 2020 U6 - https://doi.org/10.18462/iir.rankine.2020.1224 N1 - IIR International Rankine 2020 Conference - Heating, Cooling, Power Generation. Glasgow, 2020. ER - TY - CHAP A1 - Merkens, Torsten A1 - Hebel, Christoph T1 - Sharing mobility concepts – flexible, sustainable, smart T2 - Proceedings of the 1st UNITED – Southeast Asia Automotive Interest Group (SAIG) International Conference KW - Sharing mobility KW - electro mobility KW - business models KW - mobility behaviour Y1 - 2021 SN - 978-3-902103-94-9 N1 - 1st UNITED-SAIG International Conference, 21-22 APR 2021, Chulalongkorn University, Thailand SP - 43 EP - 44 ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving the px4 avoid algorithm by bio-inspired flight strategies T2 - DLRK2020 - „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ Y1 - 2020 U6 - https://doi.org/10.25967/530183 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. bis 3. September 2020 – Online, „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Bertrand, Olivier A1 - Braun, Carsten ED - Vouloutsi, Vasiliki ED - Mura, Anna ED - Tauber, Falk ED - Speck, Thomas ED - Prescott, Tony J. ED - Verschure, Paul F. M. J. T1 - Evaluation of possible flight strategies for close object evasion from bumblebee experiments T2 - Living Machines 2020: Biomimetic and Biohybrid Systems KW - Obstacle avoidance KW - Bumblebees KW - Flight control KW - UAV KW - MAV Y1 - 2020 SN - 978-3-030-64312-6 U6 - https://doi.org/10.1007/978-3-030-64313-3_34 N1 - 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings SP - 354 EP - 365 PB - Springer CY - Cham ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Braun, Carsten A1 - Havermann, Marc A1 - Bil, C. A1 - Gomez, F. T1 - Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg−1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV’s maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations. KW - Unmanned Air Vehicle KW - Geometry KW - Correlations KW - Statistics KW - Drag Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_109 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1365 EP - 1381 PB - Springer CY - Singapore ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, C. T1 - On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology. KW - Hybrid-electric aircraft KW - Aircraft design KW - Design rules KW - Green aircraft Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_99 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1261 EP - 1272 PB - Springer CY - Singapore ER - TY - CHAP A1 - Dinghofer, Kai A1 - Hartung, Frank T1 - Analysis of Criteria for the Selection of Machine Learning Frameworks T2 - 2020 International Conference on Computing, Networking and Communications (ICNC) N2 - With the many achievements of Machine Learning in the past years, it is likely that the sub-area of Deep Learning will continue to deliver major technological breakthroughs [1]. In order to achieve best results, it is important to know the various different Deep Learning frameworks and their respective properties. This paper provides a comparative overview of some of the most popular frameworks. First, the comparison methods and criteria are introduced and described with a focus on computer vision applications: Features and Uses are examined by evaluating papers and articles, Adoption and Popularity is determined by analyzing a data science study. Then, the frameworks TensorFlow, Keras, PyTorch and Caffe are compared based on the previously described criteria to highlight properties and differences. Advantages and disadvantages are compared, enabling researchers and developers to choose a framework according to their specific needs. Y1 - 2020 U6 - https://doi.org/10.1109/ICNC47757.2020.9049650 N1 - 2020 International Conference on Computing, Networking and Communications (ICNC), 17-20 February 2020, Big Island, HI, USA SP - 373 EP - 377 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Finger, Felix A1 - de Vries, Reynard A1 - Vos, Roelof A1 - Braun, Carsten A1 - Bil, Cees T1 - A comparison of hybrid-electric aircraft sizing methods T2 - AIAA Scitech 2020 Forum N2 - The number of case studies focusing on hybrid-electric aircraft is steadily increasing, since these configurations are thought to lead to lower operating costs and environmental impact than traditional aircraft. However, due to the lack of reference data of actual hybrid-electric aircraft, in most cases, the design tools and results are difficult to validate. In this paper, two independently developed approaches for hybrid-electric conceptual aircraft design are compared. An existing 19-seat commuter aircraft is selected as the conventional baseline, and both design tools are used to size that aircraft. The aircraft is then re-sized under consideration of hybrid-electric propulsion technology. This is performed for parallel, serial, and fully-electric powertrain architectures. Finally, sensitivity studies are conducted to assess the validity of the basic assumptions and approaches regarding the design of hybrid-electric aircraft. Both methods are found to predict the maximum take-off mass (MTOM) of the reference aircraft with less than 4% error. The MTOM and payload-range energy efficiency of various (hybrid-) electric configurations are predicted with a maximum difference of approximately 2% and 5%, respectively. The results of this study confirm a correct formulation and implementation of the two design methods, and the data obtained can be used by researchers to benchmark and validate their design tools. Y1 - 2020 U6 - https://doi.org/10.2514/6.2020-1006 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Kreyer, Jörg A1 - Müller, Marvin A1 - Esch, Thomas T1 - A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude N2 - In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented. Y1 - 2020 U6 - https://doi.org/10.25967/490162 N1 - 68. Deutscher Luft- und Raumfahrtkongress 30.09.-02.10.2019, Darmstadt PB - DGLR CY - Bonn ER - TY - CHAP A1 - Schulze, Sven A1 - Mühleisen, M. A1 - Feyerl, Günter T1 - Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology T2 - 18. Internationales Stuttgarter Symposium. Proceedings Y1 - 2018 U6 - https://doi.org/10.1007/978-3-658-21194-3 SP - 75 EP - 89 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Lao, B. A1 - Bührig-Polaczek, A. A1 - Röth, Thilo ED - Wielage, Bernhard T1 - Funktionsintegrierte Leichtbaustrukturen in gussintensiver Metall-Hybridbauweise T2 - Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz Y1 - 2011 SN - 978-3-00-033801-4 N1 - Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen ; 41 SP - 413 EP - 421 PB - Eigenverlag CY - Chemnitz ER - TY - CHAP A1 - Pasligh, N. A1 - Funke, D. A1 - Röth, Thilo A1 - Krack, R. T1 - Leichtbau Quertrager als Stahlblech-Aluminiumdruckguss-Hybrid - Von der numerischen Berechnung bis zum realen Prototypen T2 - VDI BERICHTE Y1 - 2010 SN - 978-3-18-092107-5 N1 - 15. Kongress SIMVEC Berechnung und Simulation im Fahrzeugbau, Baden-Baden, 16. und 17. November 2010 PB - VDI Verlag CY - Düsseldorf ER - TY - CHAP A1 - Nowack, N. A1 - Röth, Thilo A1 - Bührig-Polaczek, A. A1 - Klaus, G. ED - Hirsch, Jürgen T1 - Advanced Sheet Metal Components Reinforced by Light Metal Cast Structures T2 - Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11] Y1 - 2008 SN - 978-3-527-32367-8 IS - 2 SP - 2374 EP - 2381 ER - TY - CHAP A1 - Peterson, Leif Arne A1 - Röth, Thilo A1 - Uibel, Thomas ED - Uibel, Thormas ED - Peterson, Leif Arne ED - Baumann, Marcus T1 - Holzwerkstoffe in Karosseriestrukturen T2 - Tagungsband Aachener Holzbautagung 2017 Y1 - 2017 SN - 2197-4489 SP - 34 EP - 45 ER - TY - CHAP A1 - Neu, Eugen A1 - Janser, Frank A1 - Khatibi, Akbar A. A1 - Orifici, Adrian C. T1 - In-flight vibration-based structural health monitoring of aircraft wings T2 - 30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea N2 - This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes. Y1 - 2016 ER - TY - CHAP A1 - Wu, Ziyi A1 - Kemper, Hans T1 - The optimal 48 V – battery pack for a specific load profile of a heavy duty vehicle T2 - 8. Internationale Fachtagung Kraftwerk Batterie : 26. – 27. April 2016, Münster, Deutschland Y1 - 2016 ER - TY - CHAP A1 - Broenner, Simon A1 - Höfken, Hans-Wilhelm A1 - Schuba, Marko T1 - Streamlining extraction and analysis of android RAM images T2 - Proceedings of the 2nd international conference on information systems security and privacy Y1 - 2016 SN - 978-989-758-167-0 U6 - https://doi.org/10.5220/0005652802550264 SP - 255 EP - 264 ER -