TY - CHAP A1 - König, Johannes Alexander A1 - Wolf, Martin T1 - A new definition of competence developing games - and a framework to assess them T2 - ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions N2 - There are different types of games that try to make use of the motivation of a gaming situation in learning contexts. This paper introduces the new terminology ‘Competence Developing Game’ (CDG) as an umbrella term for all games with this intention. Based on this new terminology, an assessment framework has been developed and validated in scope of an empirical study. Now, all different types of CDGs can be evaluated according to a defined and uniform set of assessment criteria and, thus, are comparable according to their characteristics and effectiveness. KW - Serious Games KW - Gamification KW - Business Simulations KW - Assessment Y1 - 2016 SN - 978-1-61208-468-8 N1 - Proceeding of the Ninth International Conference on Advances in Computer-Human Interactions (ACHI 2016), Venice. SP - 95 EP - 97 ER - TY - CHAP A1 - König, Johannes Alexander A1 - Wolf, Martin T1 - Cybersecurity awareness training provided by the competence developing game GHOST T2 - ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions N2 - This paper introduces a Competence Developing Game (CDG) for the purpose of a cybersecurity awareness training for businesses. The target audience will be discussed in detail to understand their requirements. It will be explained why and how a mix of business simulation and serious game meets these stakeholder requirements. It will be shown that a tablet and touchscreen based approach is the most suitable solution. In addition, an empirical study will be briefly presented. The study was carried out to examine how an interaction system for a 3D-tablet based CDG has to be designed, to be manageable for non-game experienced employees. Furthermore, it will be explained which serious content is necessary for a Cybersecurity awareness training CDG and how this content is wrapped in the game KW - Awareness KW - CDG KW - Serious Game KW - tablet game KW - business simulation Y1 - 2018 SN - 978-1-61208-616-3 N1 - Proceeding of the Eleventh International Conference on Advances in Computer-Human Interactions (ACHI 2018), Rome, Italy. SP - 81 EP - 87 ER - TY - CHAP A1 - Dowidat, Linda A1 - König, Johannes Alexander A1 - Wolf, Martin T1 - The motivational competence developing game framework T2 - Mensch und Computer 2017 - Tagungsband N2 - Competence Developing Games (CDGs) are a new concept of how to think about games with serious intentions. In order to emphasize on this topic, a new framework has been developed. It basically relies on learning and motivation theories. This ‘motivational Competence Developing Game Framework’ demonstrates how it is possible to use these theories in a CDG development process. The theoretical derivation and use of the framework is explained in this paper. KW - Competence Developing Games KW - Serious Games KW - Gamification KW - motivation theories KW - learning theories Y1 - 2017 U6 - http://dx.doi.org/10.18420/muc2017-mci-0130 SP - 15 EP - 26 PB - Gesellschaft für Informatik e.V. CY - Regensburg ER - TY - CHAP A1 - König, Johannes Alexander A1 - Völker, Veronika A1 - Wolf, Martin T1 - The user-focused storybuilding framework for competence developing games - a design-framework considering the basics of an educational game’s story T2 - ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions N2 - During the development of a Competence Developing Game’s (CDG) story it is indispensable to understand the target audience. Thereby, CDGs stories represent more than just the plot. The Story is about the Setting, the Characters and the Plot. As a toolkit to support the development of such a story, this paper introduces the UserFocused Storybuilding (short UFoS) Framework for CDGs. The Framework and its utilization will be explained, followed by a description of its development and derivation, including an empirical study. In addition, to simplify the Framework use regarding the CDG’s target audience, a new concept of Nine Psychographic Player Types will be explained. This concept of Player Types provides an approach to handle the differences in between players during the UFoS Framework use. Thereby, this article presents a unique approach to the development of target group-differentiated CDGs stories. KW - Competence Developing Game KW - Serious Game KW - Video Game KW - Story KW - Player Types Y1 - 2018 SN - 978-1-61208-616-3 N1 - Proceeding of the Eleventh International Conference on Advances in Computer-Human Interactions (ACHI 2018), Rome, Italy. SP - 98 EP - 106 ER - TY - CHAP A1 - Dannen, Tammo A1 - Schindele, Benedikt A1 - Prümmer, Marcel A1 - Arntz, Kristian A1 - Bergs, Thomas T1 - Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking T2 - Procedia CIRP N2 - Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model’s initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality. KW - Additive manufacturing KW - Laser-Powder Bed Fusion KW - L-PBF KW - Binder Jetting KW - Directed Energy Deposition Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.05.188 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems VL - 107 SP - 1539 EP - 1544 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Usage of digital twins for gamification applications in manufacturing T2 - Procedia CIRP N2 - Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers’ actions. Game elements are selected according to the work task and users’ preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting. KW - Gamification KW - Digital Twin KW - Support System Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.05.044 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems VL - 107 SP - 675 EP - 680 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Wollert, Jörg T1 - 10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link T2 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS) N2 - The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies. KW - 10BASE-T1L KW - Ethernet KW - Field device KW - Sensors KW - IO-Link Y1 - 2022 SN - 978-1-6654-1086-1 SN - 978-1-6654-1087-8 U6 - http://dx.doi.org/10.1109/WFCS53837.2022.9779176 N1 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), 27-29 April 2022, Pavia, Italy- PB - IEEE ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Lange, Caroline A1 - Dachwald, Bernd A1 - Grimm, Christian A1 - Koch, Aaron A1 - Ulamec, Stephan T1 - Small Spacecraft in Planetary Defence Related Applications–Capabilities, Constraints, Challenges T2 - IEEE Aerospace Conference N2 - In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA’s ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact & Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL’s DART (Double Asteroid Redirection Test) and ESA’s AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos. KW - small spacecraft KW - planetary defence KW - asteroid lander KW - solar sail KW - flotilla missions Y1 - 2015 N1 - 2015 IEEE Aerospace Conference, 7.-13. Mar. 2015, Big Sky, Montana, USA. SP - 1 EP - 18 ER - TY - CHAP A1 - Peloni, Alessandro A1 - Dachwald, Bernd A1 - Ceriotti, Matteo T1 - Multiple NEA rendezvous mission: Solar sailing options T2 - Fourth International Symposium on Solar Sailing N2 - The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user. KW - Multiphase KW - Trajectory Optimization KW - Automated Optimization KW - Gossamer KW - Sequence-Search Y1 - 2017 N1 - Fourth International Symposium on Solar Sailing (ISSS 2017), Kyoto, Japan, 17-20 Jan 2017. http://www.jsforum.or.jp/ISSS2017/ SP - 1 EP - 11 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Hercik, D. A1 - Herique, A. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin R. A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettenmeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Responsive exploration and asteroid characterization through integrated solar sail and lander development using small spacecraft technologies T2 - IAA Planetary Defense Conference N2 - In parallel to the evolution of the Planetary Defense Conference, the exploration of small solar system bodies has advanced from fast fly-bys on the sidelines of missions to the planets to the implementation of dedicated sample-return and in-situ analysis missions. Spacecraft of all sizes have landed, touch-and-go sampled, been gently beached, or impacted at hypervelocity on asteroid and comet surfaces. More have flown by close enough to image their surfaces in detail or sample their immediate environment, often as part of an extended or re-purposed mission. And finally, full-scale planetary defense experiment missions are in the making. Highly efficient low-thrust propulsion is increasingly applied beyond commercial use also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another development in the same years is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities. The on-going NASA OSIRIS-REx and JAXA HAYABUSA2 missions exemplify the trend as well as the upcoming NEA SCOUT mission or the landers MINERVA-II and MASCOT recently deployed on Ryugu. We outline likely as well as possible and efficient routes of continuation of all these developments towards a propellant-less and highly efficient class of spacecraft for small solar system body exploration: small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules, for all asteroid user communities –planetary science, planetary defence, and in-situ resource utilization. This projection builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)² solar sail at DLR Cologne and in the 20 years since. It draws on the background of extensive trajectory optimization studies, the qualified technology of the DLR GOSSAMER-1 deployment demonstrator, and the MASCOT asteroid lander. These enable ‘now-term’ as well as near-term hardware solutions, and thus responsive fast-paced development. Mission types directly applicable to planetary defense include: single and Multiple NEA Rendezvous ((M)NR) for mitigation precursor, target monitoring and deflection follow-up tasks; sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation; and deployable membrane based methods to modify the asteroid’s properties or interact with it. The DLR-ESTEC GOSSAMER Roadmap initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery which demonstrate the capability of near-term solar sails to achieve NEA rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. For those mission types using separable payloads, such as SPO, (M)NR and RKI, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. These are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms. Y1 - 2019 N1 - Conference: IAA Planetary Defense ConferenceAt: Washington DC, USA 29.04-03.05.2019 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Baturkin, Volodymyr A1 - Coverstone, Victoria A1 - Diedrich, Ben A1 - Garbe, Gregory A1 - Görlich, Marianne A1 - Leipold, Manfred A1 - Lura, Franz A1 - Macdonald, Malcolm A1 - McInnes, Colin A1 - Mengali, Giovanni A1 - Quarta, Alessandro A1 - Rios-Reyes, Leonel A1 - Scheeres, Daniel J. A1 - Seboldt, Wolfgang A1 - Wie, Bong T1 - Potential effects of optical solar sail degredation on trajectory design T2 - AAS/AIAA Astrodynamics Specialist N2 - The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film’s optical coefficients with time, depending on the sail film’s environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions. Y1 - 2005 N1 - 2005 AAS/AIAA Astrodynamics Specialist Conference, 7-11.08.2005. Lake Tahoe, California https://www.space-flight.org/AAS_meetings/2005_astro/2005_astro.html SP - 1 EP - 23 ER - TY - CHAP A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Seboldt, Wolfgang T1 - An Interstellar – Heliopause mission using a combination of solar/radioisotope electric propulsion T2 - Presented at the 32nd International Electric Propulsion Conference N2 - There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter “RIT-22”ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter “RIT-10” ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our “InTrance” method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification. Y1 - 2011 N1 - 32nd International Electric Propulsion Conference, 11-15 September. Wiesbaden, Germany SP - 1 EP - 7 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Biele, Jens A1 - Dachwald, Bernd A1 - Grimm, Christian D. A1 - Lange, Caroline A1 - Ulamec, Stephan A1 - Ziach, Christian A1 - Spröwitz, Tom A1 - Ruffer, Michael A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Toth, Norbert A1 - Mimasu, Yuya A1 - Rittweger, Andreas A1 - Bibring, Jean-Pierre A1 - Braukhane, Andy A1 - Boden, Ralf Christian A1 - Dumont, Etienne A1 - Jahnke, Stephan Siegfried A1 - Jetzschmann, Michael A1 - Krüger, Hans A1 - Lange, Michael A1 - Gomez, Antonio Martelo A1 - Massonett, Didier A1 - Okada, Tatsuaki A1 - Sagliano, Marco A1 - Sasaki, Kaname A1 - Schröder, Silvio A1 - Sippel, Martin A1 - Skoczylas, Thomas A1 - Wejmo, Elisabet T1 - Small landers and separable sub-spacecraft for near-term solar sails T2 - The Fourth International Symposium on Solar Sailing 2017 N2 - Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages. KW - Small Solar System Body Lander KW - Small Spacecraft KW - PHILAE KW - MASCOT KW - Solar Power Sail Y1 - 2017 N1 - The Fourth International Symposium on Solar Sailing 2017, 17-20 January 2017. Kyoto Research Park, Kyoto, Japan SP - 1 EP - 10 ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results JF - International Journal of Human-Computer Studies N2 - Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence. KW - Gamification KW - Virtual reality KW - Assembly KW - User study KW - Level system Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.ijhcs.2022.102854 SN - 1071-5819 VL - 165 IS - Art. No. 102854 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Wiegner, Jonas A1 - Volker, Hanno A1 - Mainz, Fabian A1 - Backes, Andreas A1 - Löken, Michael A1 - Hüning, Felix T1 - Wiegand-effect-powered wireless IoT sensor node T2 - Sensoren und Messsysteme 2022 N2 - In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases. Y1 - 2022 SN - 978-3-8007-5835-7 SP - 255 EP - 260 PB - VDE Verlag GmbH CY - Berlin ER - TY - JOUR A1 - Kaulen, Lars A1 - Schwabedal, Justus T. C. A1 - Schneider, Jules A1 - Ritter, Philipp A1 - Bialonski, Stephan T1 - Advanced sleep spindle identification with neural networks JF - Scientific Reports N2 - Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model’s performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance. Y1 - 2022 U6 - http://dx.doi.org/10.1038/s41598-022-11210-y SN - 2045-2322 N1 - Corresponding author: Stephan Bialonski VL - 12 IS - Article number: 7686 SP - 1 EP - 10 PB - Springer Nature CY - London ER - TY - CHAP A1 - Diekmann, Julian A1 - Eggert, Mathias T1 - Is a Progressive Web App an Alternative for Native App Development? T2 - 3. Wissenschaftsforum: Digitale Transformation (WiFo21) (Lecture Notes in Informatics ; P-319) N2 - The existence of several mobile operating systems, such as Android and iOS, is a challenge for developers because the individual platforms are not compatible with each other and require separate app developments. For this reason, cross-platform approaches have become popular but lack in cloning the native behavior of the different operating systems. Out of the plenty cross-platform approaches, the progressive web app (PWA) approach is perceived as promising but needs further investigation. Therefore, the paper at hand aims at investigating whether PWAs are a suitable alternative for native apps by developing a PWA clone of an existing app. Two surveys are conducted in which potential users test and evaluate the PWA prototype with regard to its usability. The survey results indicate that PWAs have great potential, but cannot be treated as a general alternative to native apps. For guiding developers when and how to use PWAs, four design guidelines for the development of PWA-based apps are derived based on the results. KW - Progressive Web App KW - PWA KW - Cross-platform KW - Evaluation KW - Mobile web Y1 - 2021 SN - 978-3-88579-713-5 SP - 35 EP - 48 PB - Gesellschaft für Informatik CY - Darmstadt ER - TY - CHAP A1 - Dachwald, Bernd T1 - Radiation pressure force model for an ideal laser-enhanced solar sail T2 - 4th International Symposium on Solar Sailing N2 - The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a “traditional” solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail’s propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible. Y1 - 2017 N1 - 4th International Symposium on Solar Sailing 17-20 January 2017, Kyōto, Japan SP - 1 EP - 5 ER - TY - CHAP A1 - Seefeldt, Patric A1 - Bauer, Waldemar A1 - Dachwald, Bernd A1 - Grundmann, Jan Thimo A1 - Straubel, Marco A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Zander, Martin E. T1 - Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power T2 - 4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy Y1 - 2015 N1 - IAA-PDC-15-P-20 ER - TY - CHAP A1 - Schoutetens, Frederic A1 - Dachwald, Bernd A1 - Heiligers, Jeannette T1 - Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol T2 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques) 23 - 25 June 2021, Virtual N2 - With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission’s scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system. Y1 - 2021 N1 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques) 23 - 25 June 2021, Virtual SP - 1 EP - 15 ER -