TY - JOUR A1 - Sun, Hui A1 - Altherr, Lena A1 - Pei, Ji A1 - Pelz, Peter F. A1 - Yuan, Shouqi T1 - Optimal booster station design and operation under uncertain load JF - Applied Mechanics and Materials N2 - Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system’s resilience can be engineered KW - Stochastic Programming KW - Chance Constraint KW - Engineering Application KW - Pump System KW - Water Distribution Y1 - 2018 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.885.102 SN - 1662-7482 VL - 885 SP - 102 EP - 115 PB - Trans Tech Publications CY - Bäch ER - TY - JOUR A1 - Altherr, Lena A1 - Joggerst, Laura A1 - Leise, Philipp A1 - Pfetsch, Marc E. A1 - Schmitt, Andreas A1 - Wendt, Janine T1 - On obligations in the development process of resilient systems with algorithmic design methods JF - Applied Mechanics and Materials N2 - Advanced computational methods are needed both for the design of large systems and to compute high accuracy solutions. Such methods are efficient in computation, but the validation of results is very complex, and highly skilled auditors are needed to verify them. We investigate legal questions concerning obligations in the development phase, especially for technical systems developed using advanced methods. In particular, we consider methods of resilient and robust optimization. With these techniques, high performance solutions can be found, despite a high variety of input parameters. However, given the novelty of these methods, it is uncertain whether legal obligations are being met. The aim of this paper is to discuss if and how the choice of a specific computational method affects the developer’s product liability. The review of legal obligations in this paper is based on German law and focuses on the requirements that must be met during the design and development process. KW - legal obligations KW - product liability KW - design of technical systems KW - optimization KW - resilience Y1 - 2018 SN - 1662-7482 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.885.240 VL - 885 IS - 885 SP - 240 EP - 252 PB - Trans Tech Publications CY - Bäch ER - TY - JOUR A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pfetsch, Marc E. A1 - Pelz, Peter F. T1 - Maschinelles Design eines optimalen Getriebes JF - ATZ - Automobiltechnische Zeitschrift N2 - Nahezu 100.000 denkbare Strukturen kann ein Getriebe bei gleicher Funktion aufweisen - je nach Ganganzahl und gefordertem Freiheitsgrad. Mit dem traditionellen Ansatz bei der Entwicklung, einzelne vielversprechende Systemkonfigurationen manuell zu identifizieren und zu vergleichen, können leicht innovative und vor allem kostenminimale Lösungen übersehen werden. Im Rahmen eines Forschungsprojekts hat die TU Darmstadt spezielle Optimierungsmethoden angewendet, um auch bei großen Lösungsräumen zielsicher ein für die individuellen Zielstellungen optimales Layout zu finden. Y1 - 2018 SN - 2192-8800 U6 - http://dx.doi.org/10.1007/s35148-018-0131-3 VL - 120 IS - 10 SP - 72 EP - 77 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Rausch, Lea A1 - Friesen, John A1 - Altherr, Lena A1 - Meck, Marvin A1 - Pelz, Peter F. T1 - A holistic concept to design optimal water supply infrastructures for informal settlements using remote sensing data JF - Remote Sensing N2 - Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time) and describe how the result of the optimization depends on the entered remote sensing data. KW - water supply design KW - mathematical optimization KW - slum classification KW - remote sensing Y1 - 2018 SN - 2072-4292 U6 - http://dx.doi.org/10.3390/rs10020216 VL - 10 IS - 2 SP - 1 EP - 23 PB - MDPI CY - Basel ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Ahola, Marja A1 - Schabel, Samuel A1 - Pelz, Peter F. T1 - Optimizing pressure screen systems in paper recycling: optimal system layout, component selection and operation N2 - Around 60% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield. KW - Mixed-integer nonlinear problem KW - MINLP KW - Process engineering KW - Paper recycling KW - Multi-criteria optimization Y1 - 2018 SN - 978-3-030-18499-5 U6 - http://dx.doi.org/10.1007/978-3-030-18500-8_44 SP - 355 EP - 361 PB - Springer CY - Cham ER - TY - JOUR A1 - Altherr, Lena A1 - Leise, Philipp A1 - Pfetsch, Marc E. A1 - Schmitt, Andreas T1 - Algorithmic design and resilience assessment of energy efficient high-rise water supply systems JF - Applied Mechanics and Materials N2 - High-rise water supply systems provide water flow and suitable pressure in all levels of tall buildings. To design such state-of-the-art systems, the consideration of energy efficiency and the anticipation of component failures are mandatory. In this paper, we use Mixed-Integer Nonlinear Programming to compute an optimal placement of pipes and pumps, as well as an optimal control strategy.Moreover, we consider the resilience of the system to pump failures. A resilient system is able to fulfill a predefined minimum functionality even though components fail or are restricted in their normal usage. We present models to measure and optimize the resilience. To demonstrate our approach, we design and analyze an optimal resilient decentralized water supply system inspired by a real-life hotel building. KW - MINLP KW - Buffering Capacity KW - Uncertainty KW - Water Supply Networks KW - Booster Stations Y1 - 2018 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.885.211 SN - 1662-7482 VL - 885 SP - 211 EP - 223 PB - Trans Tech Publications CY - Bäch ER - TY - CHAP A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Innovative System for Earthquake Resistant Masonry Infill Walls T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11479 SP - 1 EP - 12 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Kubalski, Thomas T1 - Experimental and Numerical Investigations of Reinforced Concrete Frames with Masonry Infills under Combined In- and Out-of-plane Seismic Loading T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11477 SP - 1 EP - 12 ER - TY - CHAP A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Frequency Dependent Impedance Analysis of the Foundation-Soil-Systems of Onshore Wind Turbines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11440 SP - 1 EP - 13 ER - TY - CHAP A1 - Schmitt, Timo A1 - Rosin, Julia A1 - Butenweg, Christoph T1 - Seismic Impact And Design Of Buried Pipelines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 N2 - Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety but also for the maintenance of the supply infrastructure after an earthquake. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. However, the presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, backfill height and synthetic displacement time histories. The interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs and the propagating wave is simulated affecting the pipeline punctually, independently in time and space. Special attention is given to long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which during the earthquake lead to high bending stresses in the cross-section of the pipeline. Finally, an interpretation of the results and recommendations are given for the most critical parameters. Y1 - 2018 N1 - Paper No 10600 SP - 1 EP - 12 ER -