TY - JOUR A1 - Schoenrock, Britt A1 - Muckelt, Paul E. A1 - Hastermann, Maria A1 - Albracht, Kirsten A1 - MacGregor, Robert A1 - Martin, David A1 - Gunga, Hans-Christian A1 - Salanova, Michele A1 - Stokes, Maria J. A1 - Warner, Martin B. A1 - Blottner, Dieter T1 - Muscle stiffness indicating mission crew health in space JF - Scientific Reports N2 - Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes. KW - Ageing KW - Anatomy KW - Muscle KW - Musculoskeletal system KW - Physiology Y1 - 2024 U6 - https://doi.org/10.1038/s41598-024-54759-6 SN - 2045-2322 N1 - Corresponding author: Dieter Blottner VL - 14 IS - Article number: 4196 PB - Springer Nature CY - London ER - TY - CHAP A1 - Schneider, Dominik A1 - Wisselink, Frank A1 - Czarnecki, Christian A1 - Nölle, Nikolai T1 - Benefits and framework conditions for information-driven business models concerning the Internet of Things T2 - Digitalization in companies N2 - In the context of the increasing digitalization, the Internet of Things (IoT) is seen as a technological driver through which completely new business models can emerge in the interaction of different players. Identified key players include traditional industrial companies, municipalities and telecommunications companies. The latter, by providing connectivity, ensure that small devices with tiny batteries can be connected almost anywhere and directly to the Internet. There are already many IoT use cases on the market that provide simplification for end users, such as Philips Hue Tap. In addition to business models based on connectivity, there is great potential for information-driven business models that can support or enhance existing business models. One example is the IoT use case Park and Joy, which uses sensors to connect parking spaces and inform drivers about available parking spaces in real time. Information-driven business models can be based on data generated in IoT use cases. For example, a telecommunications company can add value by deriving more decision-relevant information – called insights – from data that is used to increase decision agility. In addition, insights can be monetized. The monetization of insights can only be sustainable, if careful attention is taken and frameworks are considered. In this chapter, the concept of information-driven business models is explained and illustrated with the concrete use case Park and Joy. In addition, the benefits, risks and framework conditions are discussed. Y1 - 2024 SN - 978-3-658-39093-8 (Print) SN - 978-3-658-39094-5 (eBook) U6 - https://doi.org/10.1007/978-3-658-39094-5_5 SP - 59 EP - 75 PB - Springer CY - Wiesbaden ER - TY - JOUR A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - Assessment of structural mechanical effects related to torsional deformations of propellers JF - CEAS Aeronautical Journal N2 - Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, showing significant extension–twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting moment solely based on the initial twist suffers from errors exceeding 5% in some cases. The nonlinear parts of the torsional rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension–twist coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General and Commercial Aviation propellers, its contribution to the lift propeller’s stiffness is limited. The paper closes with the presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine each effect for inhomogeneous cross-sections made of anisotropic material. KW - Lifting propeller KW - Extension–twist coupling KW - Trapeze effect KW - Centrifugal twisting moment Y1 - 2024 U6 - https://doi.org/10.1007/s13272-024-00737-7 SN - 1869-5590 (eISSN) SN - 1869-5582 N1 - Corresponding author: Felix Möhren PB - Springer CY - Wien ER - TY - JOUR A1 - Koch, Christopher A1 - Böhnisch, Nils A1 - Verdonck, Hendrik A1 - Hach, Oliver A1 - Braun, Carsten T1 - Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications JF - Applied Sciences N2 - Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction. KW - Aeroelasticity KW - Flutter KW - Propeller whirl flutter KW - Unsteady aerodynamics KW - 1P hub loads Y1 - 2024 U6 - https://doi.org/10.3390/app14020850 SN - 2076-3417 VL - 14 IS - 2 SP - 1 EP - 28 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Nikolausz, Marcell A1 - Krafft, Simone A1 - Bonatelli, Maria A1 - Kumar, Vivekanantha A1 - Harms, Hauke A1 - Kuperjans, Isabel T1 - Optimization of the ex situ biomethanation of hydrogen and carbon dioxide in a novel meandering plug flow reactor: start-up phase and flexible operation JF - Bioengineering KW - methanation KW - plug flow reactor KW - bubble column KW - biomethane KW - P2G Y1 - 2024 U6 - https://doi.org/10.3390/bioengineering11020165 SN - 2306-5354 VL - 11 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bornheim, Tobias A1 - Grieger, Niklas A1 - Blaneck, Patrick Gustav A1 - Bialonski, Stephan T1 - Speaker Attribution in German Parliamentary Debates with QLoRA-adapted Large Language Models JF - Journal for language technology and computational linguistics : JLCL N2 - The growing body of political texts opens up new opportunities for rich insights into political dynamics and ideologies but also increases the workload for manual analysis. Automated speaker attribution, which detects who said what to whom in a speech event and is closely related to semantic role labeling, is an important processing step for computational text analysis. We study the potential of the large language model family Llama 2 to automate speaker attribution in German parliamentary debates from 2017-2021. We fine-tune Llama 2 with QLoRA, an efficient training strategy, and observe our approach to achieve competitive performance in the GermEval 2023 Shared Task On Speaker Attribution in German News Articles and Parliamentary Debates. Our results shed light on the capabilities of large language models in automating speaker attribution, revealing a promising avenue for computational analysis of political discourse and the development of semantic role labeling systems. KW - large language models KW - German KW - speaker attribution KW - semantic role labeling Y1 - 2024 U6 - https://doi.org/10.21248/jlcl.37.2024.244 SN - 2190-6858 VL - 37 IS - 1 PB - Gesellschaft für Sprachtechnologie und Computerlinguistik CY - Regensburg ER - TY - JOUR A1 - Özsoylu, Dua A1 - Aliazizi, Fereshteh A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion JF - Biosensors and Bioelectronics N2 - As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the “real” bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an “imprinting factor” of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D). KW - Surface imprinted polymer KW - E. coli detection KW - Photolithographic mimics KW - Master stamp KW - Quartz crystal microbalance Y1 - 2024 U6 - https://doi.org/10.1016/j.bios.2024.116491 SN - 1873-4235 (eISSN) SN - 0956-5663 N1 - Corresponding author: Michael J. Schöning VL - 261 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - About the wing and whirl flutter of a slender wing–propeller system JF - Journal of Aircraft N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing–propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing–propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing–propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis. Y1 - 2024 U6 - https://doi.org/10.2514/1.C037542 SN - 1533-3868 SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Chwallek, Constanze A1 - Nawrath, Lara A1 - Krastina, Anzelika A1 - Bruksle, Ieva T1 - Supportive research on sustainable entrepreneurship and business practices JF - SECA Sustainable Entrepreneurship for Climate Action Y1 - 2024 SN - 978-952-316-514-4 (pdf) SN - 2954-1654 (on-line publication) IS - 3 PB - Lapland University of Applied Sciences Ltd CY - Rovaniemi ER - TY - JOUR A1 - Schopen, Oliver A1 - Narayan, Sriram A1 - Beckmann, Marvin A1 - Najmi, Aezid-Ul-Hassan A1 - Esch, Thomas A1 - Shabani, Bahman T1 - An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method JF - International Journal of Hydrogen Energy N2 - In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 % and the cathode side charge transfer resistance decreases by 23 % after increasing the humidity from 30 % to 85 %, while the results of static operation also show an increase of ∼2.2 % in the voltage output after increasing the relative humidity from 30 % to 85 %. In dynamic operation, visible drying effects occur at < 50 % relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators. KW - PEM fuel cell KW - Electrochemical impedance spectroscopy KW - Relative air humidity KW - Active humidity control KW - Impedance analysis Y1 - 2024 SN - 0360-3199 (print) U6 - https://doi.org/10.1016/j.ijhydene.2024.01.218 SN - 1879-3487 (online) VL - 58 IS - 8 SP - 1302 EP - 1315 PB - Elsevier CY - Amsterdam ER -