TY - GEN A1 - Pasteur, A. A1 - Ludwig, B. A1 - Tippkötter, Nils A1 - Diller, R. A1 - Kampeis, P. A1 - Ulber, Roland T1 - Aufarbeitung von β-Lactamantibiotika mittels selektiver, magnetischer Adsorbermaterialien T2 - Chemie Ingenieur Technik N2 - b-Lactame gehören zu den wirkungsvollsten Antibiotika, jedoch lassen sich viele nur schwierig fermentativ erzeugen. Ein Problem bei der fermentativen Produktion ist die Hydrolyse des Lactamrings im wässrigen Milieu. Das Ziel des von der DBU geförderten Projekts ist die selektive In-situ-Adsorption der b-Lactamantibiotika unter anschließender magnetischer Separation. Durch die Isolation im Hochgradientenmagnetseparator (HGMS) ist eine Fest-fest-flüssig-Trennung und somit ein erheblicher Zeitgewinn im Downstreamprozess möglich. Zusätzlich kommt es zur Einsparung an Lösungsmittel und Energie, was neben Reduzierung der Antibiotikahydrolyse auch in ökologischer Hinsicht einen interessanten Aspekt darstellt. Als Trägermaterial für die Adsorbermatrix werden magnetisierbare Eisenoxidpartikel eingesetzt, die in einer Silikamatrix eingebettet sind. Diese Adsorber sollen auf Selektivität in Wasser und verschiedenen Medien getestet werden. Zusätzlich werden die Abbauprodukte des b-Lactams analysiert, um eine Aussage über die Stabilisierung des Antibiotikums durch die selektiven Adsorber treffen zu können. Diese Ergebnisse werden mit kommerziell erhältlichen Adsorbern verglichen. Die Aufreinigung der Antibiotika soll direkt aus der Fermentationsbrühe erfolgen. Um die Trennung der magnetischen, selektiven Adsorber von der Biomasse zu gewährleisten, soll der HGMS in die Fermentation integriert werden. Das filamentöse Wachstum des Mikroorganismus erfordert eine Neuauslegung der Filtermatrix. KW - β-Lactame KW - Magnetische Adsorbermaterialien Y1 - 2010 U6 - https://doi.org/10.1002/cite.201050270 N1 - ProcessNet-Jahrestagung 2010 und 28. DECHEMA-Jahrestagung der Biotechnologen, 21. - 23. September 2010, Eurogress Aachen VL - 82 IS - 9 SP - 1587 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Tippkötter, Nils A1 - Zhang, M. A1 - Poth, S. A1 - Ulber, Roland T1 - Enzymatische Lignindegradierung unter Einsatz eines Optimierungsalgorithmus T2 - Chemie Ingenieur Technik N2 - Lignine bestehen aus einem hochgradig vernetzten Polymer phenolischer Grundeinheiten. Diese Verbindungen sind eine Quelle vielversprechender chemischer Grundbausteine. Auch die enzymatische Modifikation der Materialeigenschaften des Lignins ist für dessen Anwendung von Interesse. Aufgrund der verschiedenen Bindungstypen im Lignin ist eine Auftrennung mit nur einem Enzym unwahrscheinlich. Vielmehr sind verschiedene mediatorgestützte Reaktionen notwendig. Pilze, wie z.B. T. versicolor, nutzen Enzymkombinationen zum Aufschluss des Lignins. Hierbei kommen Laccase, Ligninperoxidase und Manganperoxidase zum Einsatz. Die optimale Kombination der Enzyme und ihrer Mediatoren bzw. Stabilisatoren ist Ziel der Untersuchungen. Aufgrund der großen Parameteranzahl wurde ein genetischer Algorithmus eingesetzt. Als Versuchsparameter wurden gewählt: die Verhältnisse der Enzyme, Ligninmasse, Konzentrationen an Eisen-, Mangan-, Oxalat-Ionen, ABTS, Violursäure und H₂O₂. Somit werden elf Parameter simultan optimiert. Als Algorithmus wurde ein Programm mit variabler Genkodierung entwickelt. Die Umsetzung des Lignins wird dabei über den verfolgt. Zurzeit ist ein enzymatischer Umsatz von 12% möglich. Als Referenz wurde eine chemische Lignindegradierung mit einem Umsatzvon 37% etabliert. Die sechs Generationen des Algorithmus zeigen eine Kongruenz der Enzymkonzentrationen von LiP, MnP und VeP, während Laccase keinen Einfluss hat. Des Weiteren beeinflussen die Konzentrationen von Mangan und Oxalat die Umsetzung, während die Variation von ABTS- und H₂O₂ nur eine geringe Auswirkung hat. KW - Enzymatischer Ligninabbau KW - Genetischer Algorithmus Y1 - 2010 U6 - https://doi.org/10.1002/cite.201050707 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2010 und 28. DECHEMA-Jahrestagung der Biotechnologen, 21. - 23. September 2010, Eurogress Aachen VL - 82 IS - 9 SP - 1601 EP - 1602 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Staub, C. A1 - Tippkötter, Nils A1 - Suck, K. A1 - Sohling, U. A1 - Ulber, Roland T1 - Chromatographische Aufarbeitung von Molkekonzentrat mittels mineralischer Granulate T2 - Chemie Ingenieur Technik N2 - Molke fällt im Rahmen der Käseherstellung allein in Deutschland in Mengen von über 11 Mio. Tonnen jährlich an. Dieses Nebenprodukt wurde trotz seines Reichtums an Milchzucker und Proteinen lange Zeit kaum industriell weiterverarbeitet und stellte ein bedeutendes Problem bei der Abwasserreinigung dar. Derzeit kommen meist kosten- und reinigungsintensive Membranfiltrationsverfahren bei der Auftrennung von Molke in ihre Hauptkomponenten Lactose und Molkenprotein zum Einsatz. Die Produkte finden vorwiegend in der Nahrungsmittelindustrie Anwendung als Süßungsmittel, Proteinzusatz oder Texturbildner. Die Mehrheit des Proteins wird dabei als Konzentrat bzw. Proteinpulver verarbeitet. Wegen der antibakteriellen, antiviralen und weiteren wertvollen physiologischen Eigenschaften der Molkeproteine stellt eine weitere Aufreinigung der einzelnen Molkeproteine für die pharmazeutische Industrie einen naheliegenden zusätzlichen Wertschöpfungsschritt dar. In Kooperation mit der Süd Chemie AG wurde damit begonnen, ein Verfahren zu entwickeln, das kostengünstige mineralische Adsorbentien verwendet. Bisher konnte die Abtrennung von Lactose von den Molkenproteinen aus verdünntem Molkekonzentrat in einem Verfahrensschritt ohne Vorbehandlung des Rohstoffs erfolgreich realisiert werden. Aktuelle Arbeiten beschäftigen sich mit der Verbesserung der Proteinbindekapazitätund chromatographischen Proteinauftrennung sowie dem Upscaling zum direkten Einsatz von Molkekonzentrat ohne Vorverdünnung. KW - Adsorbentien KW - Molkenprotein Y1 - 2010 U6 - https://doi.org/10.1002/cite.201050322 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2010 und 28. DECHEMA-Jahrestagung der Biotechnologen, 21. - 23. September 2010, Eurogress Aachen VL - 82 IS - 9 SP - 1588 EP - 1589 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Staub, C. A1 - Tippkötter, Nils A1 - Suck, K. A1 - Ruf, F. A1 - Sohling, U. A1 - Ulber, Roland T1 - Aufreinigung von Molkeproteinen mittels natürlicher Adsorbermaterialien T2 - Chemie Ingenieur Technik N2 - Molke als Nebenprodukt der Käseherstellung wurde lange Zeit als Abfall betrachtet. Bedingt durch ihren hohen BOD (biological oxygen demand) war die direkte Einleitung in Gewässer, aber auch der mikrobielle Abbau in Kläranlagen bedenklich. Falls eine Weiterverarbeitung der Molke stattfand, so geschah dies meist zu Molkepulver oder Proteinkonzentrat. Als Untersuchungen der Molkeproteine jedoch unter pharmazeutischen Gesichtspunkten interessante Eigenschaften nahelegten, stieg das Interesse am Bioprodukt Molke und ihren Proteinen an. So stehen beispielsweise für die Molkeproteine a-Lactalbumin (ala) und b-Lactoglobulin (blg) antibakterielle, anticancerogene und diverse andere physiologische Effekte in der Diskussion. Gegenwärtig finden meist Membranverfahren zur Aufreinigung von Molkeproteinen Anwendung. Als alternatives Verfahren wurde am Institut für Bioverfahrenstechnik in Kaiserslautern ein chromatographisches Verfahren entwickelt, bei dem natürliche Tonminerale zum Einsatz kamen. Nach chemischer und physikalischer Modifikation des Ausgangsmaterials durch den Hersteller Süd-Chemie wurden drei der Adsorber für nähere Untersuchungen zur Auftrennung von Molkeproteinen aus Molkekonzentrat herangezogen. Nach einer Cross-Flow-Filtration des Molkekonzentrats erfolgte die Aufreinigung der Molkeproteine in einem FPLC-System. Y1 - 2009 U6 - https://doi.org/10.1002/cite.200950310 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet‐Jahrestagung 2009 und 27. DECHEMA-Jahrestagung der Biotechnologen, 8.- 10. September 2009, Mannheim VL - 81 IS - 8 SP - 1299 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Poth, S. A1 - Monzon, M. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Enzymatische Hydrolyse von vorbehandelter Lignocellulose T2 - Chemie Ingenieur Technik N2 - Die ökonomische Abhängigkeit von fossilen Brennstoffen und der klimatische Wandel durch die Nutzung dieser haben zu einer intensiven Suche nach erneuerbaren Rohstoffen für die Produktion von Chemikalien und Treibstoffen geführt. Ein viel versprechender Rohstoff in diesem Zusammenhang sind Zucker, die mittels enzymatischer Hydrolyse aus Lignocellulose gewonnen und beispielsweise zu Ethanol umgesetzt werden können. Dabei ist es notwendig die Hydrolyse in Hinsicht auf das verwendete Substrat und die Verwendung der entstehenden Hydrolysate für die Fermentation von Alkohol zu optimieren. Als Substrat dienen Cellulose- und Hemicellulose-Fraktionen, die durch thermo-chemische Vorbehandlung von Holz gewonnen werden. Die Vorbehandlung erfolgt bei unserem Projektpartner am Johann Heinrich von Thünen Institut in Hamburg. Verschiedene kommerziell erhältliche Enzyme, thermostabile eingeschlossen, wurden auf ihre Fähigkeit hin untersucht, diese Fraktionen zu den entsprechenden Zuckern umsetzen zu können. Um die Konzentration an fermentierbaren Zuckern zu steigern werden verschiedene Optimierungen durchgeführt, z. B. die Erhöhung der Substrat- bzw. Enzymkonzentrationen. Ein weiterer interessanter Ansatz, welcher ebenfalls verfolgt wird, ist es die Hydrolyse und die Fermentation in einem Schritt durchzuführen. Y1 - 2009 U6 - https://doi.org/10.1002/cite.200950244 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet‐Jahrestagung 2009 und 27. DECHEMA-Jahrestagung der Biotechnologen, 8.- 10. September 2009, Mannheim N1 - Das hier vorgestellte Vorhaben wird durch die Fachagentur für Nachwachsende Rohstoffe (FNR) gefördert: „Verbundvorhaben: Pilotprojekt Lignocellulose-Bioraffinerie, Teilvorhaben 1: Extraktverarbeitung, Enzymtechnologie, verfahrenstechnische Untersuchungen, Ökobilanzierung, Wirtschaftlichkeitsberechnungen“ (Förderkennzeichen: FNR 22027405) VL - 81 IS - 8 SP - 1049 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Tippkötter, Nils A1 - Wiesen, S. A1 - Thiel, A. A1 - Muffler, K. A1 - Ulber, Roland T1 - Biotechnologische Wertstoffgewinnung entlang der Prozessketten Grüner und Pflanzenöl-Bioraffinerien T2 - Chemie Ingenieur Technik N2 - Der nachwachsende Rohstoff Raps ist in großen Mengen verfügbar und eine Quelle für Biomoleküle mit hohem Wertschöpfungspotenzial. Entwicklungen zur biotechnologischen Wertstoffgewinnung werden dabei schwerpunktmäßig in den Bereichen Aufarbeitung und Funktionalisierung von Polyphenolen und Fetten betrieben. Bei der Verarbeitung der Pflanzenmaterialien werden dabei insbesondere Verfahren zur adsorptiven Aufreinigung und Auftrennung mittels Materialien mit modifizierten Bleicherden und anderen organischen oder anorganischen Adsorbentien untersucht. Ferner wurden für die Aufreinigung von Polyphenolen adsorptive sowie extraktive Prozesse entwickelt. Bei den Entwicklungen wird berücksichtigt, dass Bioraffinerien auf eine fortwährende Gewährleistung eines hohen Produktions- bzw. Lieferbedarfs nachwachsender Rohstoffe angewiesen sind. Somit werden Optionen dezentraler regionaler Vorbehandlungs- und Wertschöpfungsketten in der Nähe landwirtschaftlicher Betriebe einbezogen. Neben neuen Aufreinigungsverfahren werden mikrobielle und enzymatische Prozesse zur wertsteigernden Umsetzung von Glycerin, Polyphenolen und Zuckermonomeren vorgestellt sowie Limitierungen nachwachsender Rohstoffe der 2. Generation diskutiert. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450283 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen N1 - Diese Arbeiten werden vom Bundesministerium für Ernährung und Landwirtschaft durch den Projektträger FNR e. V. im Rahmen des Projekts FKZ22022908 gefördert VL - 86 IS - 9 SP - 1605 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Wollny, S. A1 - Al-Kaidy, H. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Prozessintegrierte Magnetseparation im Labormaßstab mittels High-Gradient Magnetic Separator (HGMS) T2 - Chemie Ingenieur Technik N2 - Die Hochgradient-Magnetseparation (HGMS) stellt eine Alternative zu konventionellen Methoden der Proteinaufarbeitung wie Filtration und Chromatographie dar und dient zudem als Prozessintensivierung. Bisherige Separatoren sind für Anwendungen von mehreren Litern Prozessvolumina Fermentationsmedium und Gramm Magnetpartikel ausgelegt. Bei der Entwicklung und Anwendung neuartiger Magnetpartikeloberflächen ist die Verfügbarkeit großer Mengen nicht gegeben. Bisherige Filterkammern erhöhen zudem den Arbeitsaufwand und verursachen größere Partikelverluste bei Spülvorgängen oder der Reinigung aufgrund der Partikeladsorption. Für Anwendungen im Maßstab < 500 mL wird deshalb ein Miniatur-Hochgradientfilter (miniHGF) entwickelt. Das Modell wird im 3D-Drucker Makerbot Replicator 2 gefertigt und magne-isierbare Drähte zur Partikelabscheidung eingesetzt. Die Vergleichbarkeit mit einem etablierten Magnetseparator wird anhand der Aufnahme von Durchbruchskurven und Bestimmung der Filtereffizienz untersucht. Die Praxistauglichkeit mit kleinen Volumina wird in wiederholten Batch-Versuchen mit auf Magnetpartikeln immobilisiertem Enzym und einem kolorimetrischen Assay geprüft. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450618 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 86 IS - 9 SP - 1507 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Tippkötter, Nils A1 - Duwe, Anna A1 - Rais, Dominik A1 - Zibek, Susanne A1 - Zorn, H. T1 - Optimierung und Scale-up der enzymatischen Hydrolyse inkl. Ligninabbau T2 - Chemie Ingenieur Technik N2 - Primäre Ziele der Hydrolyse pflanzlicher nachwachsender Rohstoffe sind möglichst hohe Zuckerkonzentrationen für nachfolgende Fermentationen und eine Maximierung der Produktivität. Zur Optimierung dieser Prozesse wird Organosolv-aufgeschlossene Buchenholz-Cellulose verwendet. Die Hydrolyse des Faserstoffes erfolgt mithilfe von Novozymes CTec2-Enzymen. Die Hydrolysen konnten durch neue Rührerelemente auf einen Maßstab von 1000 L übertragen werden. Dabei konnten maximale Ausbeuten (g Glucose g –1 Glucose im Faserstoff) bis 81 g g – 1 und Konzentrationen von 152 g L –1 erreicht werden. Zurzeit können unter Einsatz eines Feststoffreaktors Cellulosefasern in einer Konzentration bis 400 g L –1 enzymatisch hydrolysiert werden. Die cellulolytischen Enzyme stoßen bei hohen Feststoffkonzentrationen an ihre Grenzen. Mit steigendem Feststoffgehalt nimmt die Hydrolyseausbeute ab. Ein Ansatz zur Steigerung der Effizienz ist der Einsatz ligninolytischer Enzyme, die Ligninreste an der Organosolv-Cellulose aufschließen können. Eine solche Verbesserung der Zugänglichkeit für cellulolytische Enzyme an ihr Substrat wurde durch Kulturüberstände verschiedener ligninolytischer Pilze erreicht. Mit Kulturüberständen von Stereum sp. sind Steigerungen der Glucoseausbeuten um bis zu 30 % möglich. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450287 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen N1 - Förderung vom Bundesministeriumfür Ernährung und Landwirtschaftdurch den Projektträger FNR e. V. im Rahmen des Projekts FKZ 22019409 VL - 86 IS - 9 SP - 1515 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Hering, T. A1 - Pasteur, A. A1 - Wollny, S. A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - Magnetische Separation von Gold-Nanopartikeln zur Gluconsäure-Produktion durch Hochgradient-Magnetseparation im Labormaßstab T2 - Chemie Ingenieur Technik N2 - Bei der Verarbeitung nachwachsender Rohstoffe entsteht aus Cellulose oder Stärke u. a. das wichtige Produkt Glucose. Diese niedermolekulare Kohlenhydratquelle wird üblicherweise als Substrat für biotechnologische und chemische Synthesen verwendet. Ein wirtschaftlich interessantes Oxidationsprodukt der Glucose ist Gluconsäure, die beispielsweise als Lebensmittelzusatzstoff (E 574), in der Medizin und Metallindustrie Verwendung findet. Die Umsetzung des Monosaccharids zu Gluconsäure erfolgt entweder durch mikrobielle Fermentation oder der Oxidation an heterogenen Katalysatoren. Die Zielsetzung der Studie ist die Untersuchung der Glucoseoxidation an magnetisierbaren Gold-Nanopartikeln unter nachfolgender Bypass-Separation des Katalysators mittels einer neuen Mini-HGMS-Einheit (Hochgradient-Magnetseparation). Dieser Filtertyp ermöglicht die selektive Trennung magnetischer Partikel aus Suspensionen mit hohem Feststoffgehalt oder Viskosität. Erste Ergebnisse zeigen eine Beladungskapazität des selbstkonstruierten Mini-HGMS von 550 mg goldbeschichteter magnetisierbarer Nanopartikel. Die Oxidation erfolgt bei einem pH-Wertvon 9, bei 40 °C und mit 100 mM Glucose in einem begasten Rührkesselreaktor. Das System soll zukünftig zum Katalysatorrecycling von hochviskosen und Feststoffbelasteten Produktströmen aus Bioraffinerien eingesetzt werden. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450265 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 86 IS - 9 SP - 1501 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Hering, T. A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - Aktiver und passiver antimikrobieller Oberflächenschutz durch funktionalisierte Mikropartikel T2 - Chemie Ingenieur Technik N2 - Mikrobielle Verunreinigungen von Oberflächen in technischen und medizinischen Systemen sind allgegenwärtig. Sie basieren üblicherweise auf adsorptiven Oberflächenbindungen organischer Komponenten (Proteine und Fette) oder Membrankomponenten aerogener sowie wassergebundener Mikroorganismen. In laufenden Forschungsarbeiten wird eine aktive sowie passive Biomodifikation von Oberflächen zu deren Schutz vor Adsorption von Proteinen und Mikroorganismen verfolgt. Der antimikrobielle Schutz soll dabei sowohl durch die Mikrostrukturierung bzw. Rauheitsanpassung der Oberflächen durch deren Beschichtung mit Mikro-und Nanopartikeln erfolgen. Ferner werden antimikrobielle Enzyme und funktionelle Gruppen auf den Mikropartikeln gebunden, um den Oberflächenschutz zu verstärken. In ersten Versuchen wurden quartäre Ammoniumverbindungen auf eigens synthetisierten superparamagnetischen Eisenoxid-Nanopartikeln (Durchmesser 10 – 30 nm) immobilisiert und die wachstumshemmende Wirkung untersucht. Erste Ergebnisse zeigten, dass eine Konzentration von 10 mg mL⁻¹ der Ammoniumverbindung in einer Wachstumshemmung des verwendeten Gram-negativen Modell-Mikroorganismus E. coli GFPmut2 resultiert. Zurzeit werden synergistisch wirkende Kombinationen von Partikeln mit Proteasen, quartären Ammoniumverbindungen, hydrophoben Oberflächen und mikrostrukturierten Oberflächen als antimikrobieller Schutz untersucht. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450264 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 9 IS - 86 SP - 1474 EP - 1475 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Al-Kaidy, H. A1 - Tippkötter, Nils A1 - Kaiser, P. A1 - Wollny, S. A1 - Ulber, Roland T1 - Aufreinigung von Cytochrom P450BMP mittels magnetischer Partikel und die enzymatische Synthese von 9, 10-Dihydroxystearinsäure T2 - Chemie Ingenieur Technik N2 - Cytochrom P450 sind Häm-Proteine, die zur Enzymklasse der Oxidoreduktasen (EC 1.14.xy) gehören. Eine wichtige Reaktion ist die Hydroxylierung nichtaktivierter C–H-Bindungen, die in technischen Systemen von großem Interesse ist. Durch die Verwendung von M-IDA-2-Partikeln ist eine direkte Aufreinigung mit gleichzeitiger Immobilisierung und die Applikation der Enzyme aus dem Zelllysat möglich. Damit ist das Verfahren mehr als fünf Stunden schneller als die konventionelle Chromatographie und mehr als 80 % der Aufreinigungszeit wird gespart. Mit dem isolierten nativen Enzym konnte die Plattformchemikalie 9,10-Dihydroxystearinsäure aus Ölsäure hergestellt werden. Unter anderem für die Kunststoffindustrie können aus diesem Produkt wichtige Monomere wie z. B. Azelainsäure hergestellt werden. Die Bildung des Produkts erfolgt in einem zweiphasigen Reaktionssystem an der Grenzfläche zwischen dem Öl und der wässrigen Phase als Feststoff. Um das immobilisierte Enzym aktiv in die obere Phase zu transportieren, wurde eine neue magnetische Mischvorrichtung entwickelt. Das Reaktionsprodukt wurde mit NMR, GC-MS und HPLC-MS analysiert und mit einem chemisch synthetisierten Standard von 9,10-Dihydroxystearinsäure verglichen. Derzeit werden Studien des immobilisierten Häms des Enzyms durchgeführt. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450420 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen N1 - Gefördert wird dieses Projekt im Rahmen von MAGNENZ durch das BMBF VL - 86 IS - 9 SP - 1420 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Al-Kaidy, H. A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - Eine Plattform-Technologie für die automatisierte Reaktionsführung in magnetisierbaren mikrofluidischen Tropfen T2 - Chemie Ingenieur Technik N2 - Üblicherweise werden biotechnologische Reaktionssysteme im mikrofluidischen Maßstab in vorstrukturierten Bauteilen oder mit auf Wellplatten basierenden Robotersystemen realisiert. In dem hier vorgestellten System werden chemische oder biologische Reaktionen mit magnetischen Mikroreaktoren (MR) durchgeführt, bei denen hydrophobe magnetische Mikropartikel einen wässrigen Kern umschließen. Solche MR bieten eine gute Kontrolle der Reaktionsbedingungen, eine verbesserte Sicherheit und Portabilität. Die neue Plattformtechnologie ermöglicht die zweidimensionale Bewegung der magnetischen MR auf einer planaren Ebene. Oberhalb oder unterhalb der Plattform werden Magnetfeldgradienten zum Manipulieren und Bewegen eines oder mehrerer magnetischer MR erzeugt. Die optimal auf die MR wirkenden magnetischen Kräfte werden experimentell ermittelt und simuliert. Die Aktivierung der Magnetfelder wird automatisiert durch elektrische Spulen mit Eisenkern bzw. Neodymmagnet gesteuert. Angewendet wurde das System beim reversiblen Öffnen von MR, um z. B. Reaktionspartner in den wässrigen Kern zu injizieren oder Proben zu entnehmen. Ferner wurde Lac-case A und b-Glucosidase auf einer Quarzglasoberfläche immobilisiert und mit einem MR zum Reagieren gebracht. Weiterhin wurden MR fusioniert und so ein wässriger Kern bestehend aus Laccase mit einem aus dem entsprechenden Substrat Syringaldazin vereint. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450424 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 86 IS - 9 SP - 1419 EP - 1420 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Stadtmüller, R. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Produktion von einzelsträngigen DNA-Makronukleotiden T2 - Chemie Ingenieur Technik N2 - In der Biotechnologie stellt Einzelstrang-DNA (ssDNA) eine Schlüsselrolle dar und fungiert z. B. als Baustein für die nanoskalige Feinmechanik oder als Affinitätsligand, ein sog. Aptamer. Hinsichtlich der industriellen Verwendung bieten Aptamere im Vergleich zu Antikörpern viele Vorteile, wie z. B. eine gute Renaturierung bzw. die Selektion für cytotoxische Moleküle. Aktuell wächst die Nachfrage für chimäre Aptamere von bis zu 200 n, um die simultane Bindung bzw. die Modifikation mehrerer Moleküle zu realisieren. Bis heute wird ssDNA mittels einer sequentiellen Synthese hergestellt, die eine Effizienz von ca. 99,5 % je Zyklus und bereits bei einer Produktlänge von 100 n nur noc hAusbeuten von max. 60 % zeigt. Um dem Bedarf an ssDNA im Bereich > 100 n zu entsprechen, wurden zwei enzymatische Verfahren zur Produktion dieser Makronukleotide entworfen. Die erste Technik basiert auf einerFestphasen-PCR und ermöglicht sowohlein Primer- als auch ein Templatrecycling. Das zweite Verfahren beruht auf einer Plasmidbasierten In-vivo-Amplifikation, der sog. AptaGENE®-Technologie. In einer einzigen Klonierung werden bis zu 100 Kopien des Monomers in einen Vektor kloniert. Nach einer Transformation folgt der reguläre Produktionsprozess in Form einer Kultivierung, Plasmidpräparation und sequenziellen Aufarbeitung von bis zu 6 · 10¹⁵ Makronukleotiden pro Milliliter Fermentationsvolumen. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450372 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 86 IS - 9 SP - 1403 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Tippkötter, Nils A1 - Roth, J. A1 - Möhring, M. A1 - Wulfhorst, H. A1 - Ulber, Roland T1 - Verwertung von Bioraffinerie-Stoffströmen am Beispiel von Einzellerproteinen T2 - Chemie Ingenieur Technik N2 - Die Nutzung von Biomasse aus pflanzlichen Abfällen für die stoffliche Verwertung rückt immer stärker in den Vordergrund. Dabei ist vor allem die ganzheitliche Verwertung der Stoffströme von Bedeutung, da diese einen integrativen Ansatz ermöglichen. Im Rahmen dieser Arbeit wird die Produktion von Einzellerproteinen (Single-Cell Proteins, SCPs) mithilfe von unterschiedlichen Rohsubstraten dargelegt. Somit können Reststoffströme, die in keiner Konkurrenz zur Produktion von Lebensmitteln stehen, für die Herstellung von Futter- und auch Nahrungsmitteln Verwendung finden. Die zunächst thermisch vorbehandelten Ausgangsmaterialien stammen aus forstwirtschaftlichen und grünen Abfällen und ermöglichen durch eine anschließende enzymatische Hydrolyse die Freisetzung von Monosacchariden. Aus diesen erfolgt die SCP-Produktion fermentativ mithilfe der drei Modellorganismen Bakterium, Hefe und Pilz. Hierfür wird sowohl das flüssige Hydrolysat als auch der feste Reststoff auf der Basis einer Feststofffermentation genutzt. Auf diese Weise ist eine vollständige Verwertung der Ausgangsmaterialien möglich. Mit den gewonnen Daten erfolgt abschließend eine Bewertung der SCPs aus nachwachsenden Rohstoffen als alternative Proteinquelle. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450257 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 86 IS - 9 SP - 1399 EP - 1400 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Duwe, A. A1 - Sieker, T. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Grasssilage als Substrat zur fermentativen Produktion organischer Säuren T2 - Chemie Ingenieur Technik N2 - Der zunehmende Bedarf an fossilen Rohstoffen bei gleichzeitig abnehmender Versorgungssicherheit führt zu einer intensiven Suche nach erneuerbaren Ressourcen. Ein vielversprechendes Ausgangsmaterial mit einer weltweiten Verfügbarkeit stellt Gras dar. In 2012 wurden in Deutschland 33 Millionen Tonnen (Heugewicht) Gras auf 4,82 Millionen Hektar Ackerland produziert, davon wurden 60,5 % siliert. Durch die Silierung kann Gras als Substrat zeitlich uneingeschränkt verfügbar sein, ohne dem Risiko des schnellen Verderbs ausgesetzt zu sein. Eine Schlüsselrolle im Rahmen des Silierprozesses nimmt die Produktion von Milchsäure ein. Milchsäure ist einbedeutendes biotechnologisches Produkt für die Lebensmittel- und die chemische Industrie. Im Rahmen dieser Arbeit wird die vollständige Umwandlung der fermentierbaren Zucker in der Silage zu Milchsäure angestrebt, um die maximale Ausbeute der organischen Säure zu erreichen. Im ersten Verfahrensschritt wird die Silage gepresst und der erhaltene Presskuchen einer Liquid-Hot-Water-Behandlung unterzogen. Durch diese einfache Vorbehandlung können hohe Glucoseausbeuten im nachfolgenden SSF-Schritt bei gleichzeitig geringem Enzymeinsatz und Chemikalienverbrauch realisiert werden. Zur Aufreinigung der Milchsäure wurden extraktive und chromatographische Methoden untersucht. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450345 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 86 IS - 9 SP - 1400 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Tippkötter, Nils A1 - Möhring, S. T1 - Nutzung von Fäulepilzen für die selektive Gewinnung von Cellulose und Lignin aus nicht vorbehandelter lignocellulosehaltiger Biomasse T2 - Chemie Ingenieur Technik N2 - Einige Arten der Braun- und Weißfäulepilze sind in der Lage, selektiv entweder Lignin oder Cellulose im Holz abzubauen. Diese Pilze können für eine energiesparende Vorbehandlung lignocellulosehaltiger Biomasse für Bioraffinerien genutzt werden, ohne auf technisch aufwändige Aufschlussapparate zurückgreifen zu müssen. Weißfäulepilze bauen bevorzugt Lignin ab, wodurch die verbleibende Cellulose leichter für enzymatische Hydrolysen in das Monosaccharid Glucose zugänglich wird. Braunfäulepilze bauen dagegen Cellulose und Hemicellulose ab. Die Auswirkungen der Behandlung von Weizenstroh mit verschiedenen Pilzarten werden zurzeit untersucht. Dabei werden die Veränderung der enzymatischen Hydrolysierbarkeit des Substrats sowie die gebildeten Ligninderivate bestimmt. Detaillierte Betrachtungen der Biomasseveränderung werden mithilfe spezifischer Färbemethoden durchgeführt, durch die morphologische Veränderungen der Pflanzengewebe in der 3D-Lichtmikroskopie dargestellt werden können. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450353 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen N1 - Diese Arbeit wird durch das Bundesministerium für Ernährung und Landwirtschaft über die FNR e.V. unter dem Projektnamen „Lokale Vorbehandlung nachwachsender Rohstoffe für Bioraffinerien“ gefördert (FKZ 22028411) VL - 86 IS - 9 SP - 1385 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Tippkötter, Nils A1 - Wasserscheid, P. T1 - Rapid-Prototyping-Strukturen für ressourceneffiziente Prozesse in Chemie und Biotechnologie T2 - Chemie Ingenieur Technik N2 - Die Teilefertigung durch Rapid Prototyping (RP) verkürzt den Weg von der Idee bis zum Produkt, wobei unter anderem Optimierungszyklen in geringer Zeit durchlaufen werden können. Ferner eröffnen neue Entwicklungen in diesem Bereich die Möglichkeit individueller Produktionsverfahren. Im Unterschied zur klassischen Fertigung von Prototypen wird beim RP mit additiver Schichtfertigung (Additive Layer Manufacturing, ALM) gearbeitet. Je nach Methode werden Flüssigkeiten oder Pulver nach Vorgaben eines 3D-Computermodells sequentiell aufgetragen. Diese Verfahren existieren seit ca. 25 Jahren, jedoch sind seit kurzem ausgesprochen günstige Geräte verfügbar, die Objekte mit Genauigkeiten bis 20 lm fertigen können. Das RP hat in klinischen Anwendungsgebieten bzw. im Bereich des Tissue Engineering bereits vielfach Einzug gefunden. Aber auch chemisch-biotechnologische Entwicklungen können von den Verfahren profitieren. So wurden Mikrofluidiksysteme und Bioreaktoren bereits erfolgreich durch RP gefertigt. Durch ALM ist ebenso die Herstellung von Reaktionseinheiten aus biokompatiblen Materialien wie ionotropen Gelen möglich. Ferner sind sehr komplexe Strukturierungen von Oberflächen im Nanometerbereich realisierbar, die für die Auftragung heterogener Katalysatoren oder auch Mikroorganismen eingesetzt werden können. Auch der Bereich Reaktoren- und Apparatebau kann von den Fortschritten in der additiven Fertigung profitieren. Verfahren wie selektives Laser- oder Elektronenstrahlschmelzen erlauben es, metallische Komponenten in nahezu beliebigen Geometrien zu fertigen. Somit können Strukturen verwirklicht werden, die mit konventionellen Fertigungstechniken nur sehr schwer oder überhauptnicht herstellbar wären. Durch Anwendung von rechnergestützter Modellierung können optimale Strukturen identifiziert und additiv gefertigt werden. Eine anschließende katalytische Funktionalisierung der Oberfläche ermöglicht die Herstellung strukturierter Reaktoren mit maßgeschneiderten Eigenschaften. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450451 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 86 IS - 9 SP - 1369 EP - 1370 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Stadtmüller, R. A1 - Wollny, S. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Amplifikation und Einsatz von ssDNA-Aptameren T2 - Chemie Ingenieur Technik N2 - Die wachsende Produktpalette von z. B. Pharmazeutika geht mit einer steigenden Nachfrage für hochsensitive/schonende Aufreinigungstechniken einher. Bisherige Verfahren führen oft zu geringer Reinheit und verminderter Bioaktivität, zeigen eine Limitation der Analytengröße oder bedingen dessen Modifikation. Durch die Kombination von mikroskaligen Magnetpartikeln und spezifisch wechselwirkenden Einzelstrang-DNA-Oligonukleotiden, den sog. ssDNA-Aptameren, sind eine höhere Selektivität/Reinheit und eine Automatisierung möglich. In diesem Kontext werden zum einen ssDNA-Amplifikationstechniken und zum anderen der praktische Einsatz von Aptameren in einer Magnetseparation vorgestellt. Die ssDNA-Synthese basiert auf einem In-vivo-dsDNA-Produktionsschritt mittels eines rekombinanten Escherichia coli. Die als High-copy-Plasmid organisierte Sequenz wird in vitro durch Kombination verschiedener enzymatischer Reaktionen in die funktionelle ssDNA überführt. Diese Technik bedingt nur minimale Instrumentierung bzw. Prozessregelung. Die zweite Synthesetechnik wird in Form eines In-vitro-Amplifikationsverfahrens realisiert und beruht auf dem Prinzip einer PCR (Potenzial zu einer Automatisierung bzw. Miniaturisierung). Die gewonnenen Aptamere werden im Anschluss in einem auf Magnetpartikeln basierten Trennverfahren zur Isolationvon 6xHis-tag-Proteinen bezüglich ihrer Eigenschaften untersucht. Y1 - 2012 U6 - https://doi.org/10.1002/cite.201250112 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2012 und 30. DECHEMA-Jahrestagung der Biotechnologen, 10. – 13. September 2012, Karlsruhe VL - 84 IS - 8 SP - 1294 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Wollny, S. A1 - Stadtmüller, R. A1 - Tippkötter, Nils A1 - Oster, J. A1 - Kampeis, P. A1 - Ulber, Roland T1 - Optimierung der selektiven Aufarbeitung von Proteinen mit Aptamer-funktionalisierten Magnetpartikeln T2 - Chemie Ingenieur Technik N2 - Die Herstellung pharmakologisch relevanter Proteine durch Mikroorganismen führt eine mehrstufige Aufarbeitung mit sich. Durch die Verwendung von Aptameren, kurzen einzelsträngigen DNA- oder RNA-Oligonukleotiden immobilisiert auf funktionalisierten, wiederverwendbaren Magnetpartikeln, können mehrere dieser Abtrennungsoperationen kombiniert und damit die Prozesskosten minimiert werden. Aufgrund der definierten dreidimensionalen Struktur können Aptamere kleine organische Moleküle hochspezifisch binden. Im vorgestellten Projekt wird die Aufarbeitung von His6-GFP als Modellprotein mithilfe der mit Aptamer funktionalisierten Magnetpartikel durchgeführt. In bisherigen Versuchen wurde die Bindung von Aptameren auf den magnetischen Partikeln sowie die Bindung des Modellproteins GFP auf den Partikeln optimiert. Des Weiteren wurden mehrere Strategien zur Elution des GFPs von den Partikeln verfolgt, um den Proteinertrag zu maximieren und die Partikel rezyklieren zu können. Die Untersuchung unspezifischer Bindungen von Zelltrümmern und Proteinen an die Magnetpartikel wurde mithilfe eines konfokalen Laser-Scanning-Mikroskops durchgeführt. Y1 - 2012 U6 - https://doi.org/10.1002/cite.201250031 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2012 und 30. DECHEMA-Jahrestagung der Biotechnologen, 10. – 13. September 2012, Karlsruhe VL - 84 IS - 8 SP - 1203 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Duwe, A. A1 - Tippkötter, Nils A1 - Leipold, D. A1 - Riemer, S. A1 - Zorn, H. A1 - Ulber, Roland T1 - Holzhydrolyse als Feststoffreaktion: Charakterisierung von Inhibitoren und Erhöhung der Ausbeute durch den Einsatz lignolytischer Enzyme T2 - Chemie Ingenieur Technik N2 - Der Erhalt möglichst hoher Zuckerkonzentrationen für nachfolgende Fermentationen und eine Steigerung der Produktivität sind Ziele der Hydrolyse bei hohen Feststoffkonzentrationen im Rahmen des Projekts „Lignocellulose Bioraffinerie“. Verwendet wird durch ein Organosolv-Verfahren aufgeschlossenes Buchenholz. Die Hydrolyse des Faserstoffes erfolgt mithilfe von CTec2-Enzymen (Fa. Novozymes). Zurzeit können unter Einsatz eines neuen Feststoffreaktors Cellulosefasern in einer Konzentration bis 400 g L⁻¹ enzymatisch hydrolysiert werden. Dabei werden Ausbeuten (g Glucose/g Cellulose im Faserstoff) bis 0,86 g g⁻¹ und Glucosekonzentrationenvon 120 g L⁻¹ erreicht. Ein Nachteil ist jedoch die hierbei auftretende Abnahme der Hydrolyseausbeuten. Zahlreiche Limitierungen bezüglich der Hydrolysierbarkeit von Lignocellulose werden zurzeit diskutiert und publiziert. Ziel der Untersuchungen ist die Identifizierung hydrolysehemmender Substanzen sowie die Erhöhung der Ausbeute an Zuckermonomeren durch den Einsatz lignolytischer Enzyme. Hierbei wird eine HPLC-MS-Methode zur Charakterisierung hemmender Substanzen eingesetzt, um potenzielle Inhibitoren zu erfassen. Y1 - 2012 U6 - https://doi.org/10.1002/cite.201250298 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2012 und 30. DECHEMA-Jahrestagung der Biotechnologen, 10. – 13. September 2012, Karlsruhe VL - 84 IS - 8 SP - 1307 PB - Wiley-VCH CY - Weinheim ER -