TY - CHAP A1 - Thoma, Andreas A1 - Stiemer, Luc A1 - Braun, Carsten A1 - Fisher, Alex A1 - Gardi, Alessandro G. T1 - Potential of hybrid neural network local path planner for small UAV in urban environments T2 - AIAA SCITECH 2023 Forum N2 - This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2359 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Ashikaga, Mitsugu A1 - Yamaguchi, Masato A1 - Ogino, Tomoyuki A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combined heat and power supply demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine T2 - Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A) N2 - Kawasaki Heavy Industries, Ltd. (KHI), Aachen University of Applied Sciences, and B&B-AGEMA GmbH have investigated the potential of low NOx micro-mix (MMX) hydrogen combustion and its application to an industrial gas turbine combustor. Engine demonstration tests of a MMX combustor for the M1A-17 gas turbine with a co-generation system were conducted in the hydrogen-fueled power generation plant in Kobe City, Japan. This paper presents the results of the commissioning test and the combined heat and power (CHP) supply demonstration. In the commissioning test, grid interconnection, loading tests and load cut-off tests were successfully conducted. All measurement results satisfied the Japanese environmental regulation values. Dust and soot as well as SOx were not detected. The NOx emissions were below 84 ppmv at 15 % O2. The noise level at the site boundary was below 60 dB. The vibration at the site boundary was below 45 dB. During the combined heat and power supply demonstration, heat and power were supplied to neighboring public facilities with the MMX combustion technology and 100 % hydrogen fuel. The electric power output reached 1800 kW at which the NOx emissions were 72 ppmv at 15 % O2, and 60 %RH. Combustion instabilities were not observed. The gas turbine efficiency was improved by about 1 % compared to a non-premixed type combustor with water injection as NOx reduction method. During a total equivalent operation time of 1040 hours, all combustor parts, the M1A-17 gas turbine as such, and the co-generation system were without any issues. KW - industrial gas turbine KW - combustor development KW - fuels KW - hydrogen KW - emission Y1 - 2022 SN - 978-0-7918-8599-4 U6 - https://doi.org/10.1115/GT2022-81620 N1 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition June 13–17, 2022 Rotterdam, Netherlands PB - American Society of Mechanical Engineers CY - Fairfield ER - TY - CHAP A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the determination of harmonic propeller loads T2 - AIAA SCITECH 2023 Forum N2 - Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2404 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA ER - TY - CHAP A1 - Gömmel, Andreas A1 - Frauenrath, Tobias A1 - Otten, Mario A1 - Niendorf, Thoralf A1 - Butenweg, Christoph ED - Möser, Michael ED - Schulte-Fortkamp, Brgitte ED - Ochmann, Martin T1 - In-vivo measurements of vocal fold geometry using Magnetic Resonance Imaging T2 - Fortschritte der Akustik - DAGA 2010, 36. Jahrestagung für Akustik Y1 - 2010 SN - 978-3-9808659-8-2 PB - Deutsche Gesellschaft für Akustik CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Pavese, Alberto A1 - Lanese, Igor A1 - Hoffmeister, Benno A1 - Pinkawa, Marius A1 - Vulcu, Mihai-Cristian A1 - Bursi, Oreste A1 - Nardin, Chiara A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca A1 - Fragiadakis, Michalis A1 - Weber, Felix A1 - Huber, Peter A1 - Renault, Philippe A1 - Gündel, Max A1 - Dyke, Shirley A1 - Ciucci, M. A1 - Marino, A. T1 - Seismic performance of multi-component systems in special risk industrial facilities T2 - Proceedings of the seventeenth world conference on earthquake engineering N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 N1 - 17. World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan, 2021-09-27 - 2021-10-02 ER - TY - CHAP A1 - Taddei, Francesca A1 - Lozana, Lara A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Papadrakakis, M. ED - Papadopoulos, V. ED - Plevris, V. T1 - Practical recommendations for the foundation design of onshore wind turbines including soil-structure interaction T2 - 5th International Conference on Computational Methods in Structural , Hersonissos, Greece Dynamics and Earthquake Engineering, COMPDYN 2015, 25.05.2015-27.05.2015, Hersonissos, Greece. Y1 - 2015 ER - TY - CHAP A1 - Welden, Melanie A1 - Severins, Robin A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Studying the immobilization of acetoin reductase with Tobacco mosaic virus particles on capacitive field-effect sensors T2 - 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) N2 - A capacitive electrolyte-insulator-semiconductor (EISCAP) biosensor modified with Tobacco mosaic virus (TMV) particles for the detection of acetoin is presented. The enzyme acetoin reductase (AR) was immobilized on the surface of the EISCAP using TMV particles as nanoscaffolds. The study focused on the optimization of the TMV-assisted AR immobilization on the Ta 2 O 5 -gate EISCAP surface. The TMV-assisted acetoin EISCAPs were electrochemically characterized by means of leakage-current, capacitance-voltage, and constant-capacitance measurements. The TMV-modified transducer surface was studied via scanning electron microscopy. KW - Tobacco mosaic virus KW - acetoin KW - capacitive field-effect biosensor KW - enzyme immobilization Y1 - 2022 SN - 978-1-6654-5860-3 (Online) SN - 978-1-6654-5861-0 (Print) U6 - https://doi.org/10.1109/ISOEN54820.2022.9789657 N1 - IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 29 May 2022 - 01 June 2022, Aveiro, Portugal. PB - IEEE ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper T2 - 6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain Y1 - 2014 ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration control of slender structures by semi-active tuned liquid column dampers T2 - Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07 Y1 - 2013 N1 - http://www.emi2013.northwestern.edu/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=213&type=1 Seite kann nicht gefunden werden. ER - TY - CHAP A1 - Butenweg, Christoph A1 - Norda, Hannah ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Nonlinear analysis of masonry structures according to Eurocode 8 T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Churilov, Sergej A1 - Dumova-Jovanoska, Elena A1 - Butenweg, Christoph ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) N2 - A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia. Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Pütz, Sebastian A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Mertens, Alexander A1 - Rodemann, Niklas A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena T1 - An interdisciplinary view on humane interfaces for digital shadows in the internet of production T2 - 2022 15th International Conference on Human System Interaction (HSI) N2 - Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers’ capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization. KW - digital twin KW - digital shadow KW - cyber-physical production system KW - human-machine interface Y1 - 2022 SN - 978-1-6654-6823-7 (Print) SN - 978-1-6654-6822-0 (Online) U6 - https://doi.org/10.1109/HSI55341.2022.9869467 SN - 2158-2246 (Print) SN - 2158-2254 (Online) N1 - 15th International Conference on Human System Interaction (HSI), 28-31 July 2022, Melbourne, Australia. PB - IEEE ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 3261 EP - 3270 ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 2747 EP - 2756 ER - TY - CHAP A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Arion, Christian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Behaviour factor q for the seismic design of URM buildings T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed. KW - unreinforced masonry buildings KW - modern constructions KW - seismic design KW - linear elastic analysis; KW - behaviour factor q Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 1184 EP - 1194 ER - TY - CHAP A1 - Tomić, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Correia, António A. A1 - Candeias, Paulo X. A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Seismic testing of adjacent interacting masonry structures T2 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020) N2 - In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the façades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the façade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25%, 50%, 75% and 100% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test Y1 - 2020 U6 - https://doi.org/10.23967/sahc.2021.234 N1 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2021), September 29-30 and October 1, 2021, online N1 - (SAHC 2020 ursprünglich geplant für September 2020 in Barelona - verschoben wg. Covid-Pandemie) SP - 1 EP - 12 ER - TY - CHAP A1 - Tomic, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Blind predictions of shake table testing of aggregate masonry buildings T2 - Proceedings of the 17th World Conference on Earthquake Engineering N2 - In many historical centers in Europe, stone masonry is part of building aggregates, which developed when the layout of the city or village was densified. The analysis of such building aggregates is very challenging and modelling guidelines missing. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The SERA project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures) provides such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. With the aim to advance the modelling of unreinforced masonry aggregates, a blind prediction competition is organized before the experimental campaign. Each group has been provided a complete set of construction drawings, material properties, testing sequence and the list of measurements to be reported. The applied modelling approaches span from equivalent frame models to Finite Element models using shell elements and discrete element models with solid elements. This paper compares the first entries, regarding the modelling approaches, results in terms of base shear, roof displacements, interface openings, and the failure modes. KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test KW - Blind prediction competition Y1 - 2020 N1 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021 N1 - (Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt) ER - TY - CHAP A1 - Šakić, Bogdan A1 - Milijaš, Aleksa A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Influence of prior in-plane damage on the out-of-plane response of non-load bearing unreinforced masonry walls under seismic load T2 - Proceedings of COMPDYN 2021 N2 - Reinforced concrete frames with masonry infill walls are popular form of construction all over the world as well in seismic regions. While severe earthquakes can cause high level of damage of both reinforced concrete and masonry infills, earthquakes of lower to medium intensity some-times can cause significant level of damage of masonry infill walls. Especially important is the level of damage of face loaded infill masonry walls (out-of-plane direction) as out-of-plane load cannot only bring high level of damage to the wall, it can also be life-threating for the people near the wall. The response in out-of-plane direction directly depends on the prior in-plane damage, as previous investigation shown that it decreases resistance capacity of the in-fills. Behaviour of infill masonry walls with and without prior in-plane load is investigated in the experimental campaign and the results are presented in this paper. These results are later compared with analytical approaches for the out-of-plane resistance from the literature. Conclusions based on the experimental campaign on the influence of prior in-plane damage on the out-of-plane response of infill walls are compared with the conclusions from other authors who investigated the same problematic. KW - Earthquake Engineering KW - Unreinforced masonry walls KW - Out-of-plane load KW - In- plane damage KW - Out-of-plane failure Y1 - 2021 SN - 9786188507258 U6 - https://doi.org/10.7712/120121.8527.18913 SN - 2623-3347 N1 - COMPDYN 2021, 28-30 June 2021, Streamed from Athens, Greece, 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering SP - 808 EP - 828 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading T2 - Proceedings of COMPDYN 2021 N2 - Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results. KW - Seismic loading KW - Masonry infill KW - Out-of-plane load KW - Out-of-plane strength Y1 - 2021 SN - 978-618-85072-5-8 U6 - https://doi.org/10.7712/120121.8528.18914 SN - 2623-3347 N1 - COMPDYN 2021, 28-30 June 2021, Streamed from Athens, Greece, 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering SP - 829 EP - 846 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Butenweg, Christoph ED - Kuzmanović, Vladan ED - Ignjatović, Ivan T1 - Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies T2 - Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions N2 - Nowadays modern high-performance buildings and facilities are equipped with monitoring systems and sensors to control building characteristics like energy consumption, temperature pattern and structural safety. The visualization and interpretation of sensor data is typically based on simple spreadsheets and non-standardized user-oriented solutions, which makes it difficult for building owners, facility managers and decision-makers to evaluate and understand the data. The solution of this problem in the future are integrated BIM-Sensor approaches which allow the generation of BIM models incorporating all relevant information of monitoring systems. These approaches support both the dynamic visualization of key structural performance parameters, the effective long-term management of sensor data based on BIM and provide a user-friendly interface to communicate with various stakeholders. A major benefit for the end user is the use of the BIM software architecture, which is the future standard anyway. In the following, the application of the integrated BIM-Sensor approach is illustrated for a typical industrial facility as a part of an early warning and rapid response system for earthquake events currently developed in the research project “ROBUST” with financial support by the German Federal Ministry for Economic Affairs and Energy (BMWI). Y1 - 2021 N1 - Civil Engineering 2021 – Achievements and Visions, University of Belgrade, October 25 – 26, 2021 Belgrade, Serbia SP - 67 EP - 75 PB - University of Belgrade CY - Belgrade ER -