TY - JOUR A1 - Zhubanova, Azhar A. A1 - Aknazarov, S. K. A1 - Mansurov, Zulkhair A1 - Digel, Ilya A1 - Kozhalakova, A. A. A1 - Akimbekov, Nuraly Shardarbekovich A1 - O'Heras, Carlos A1 - Tazhibayeva, S. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Adsorption of bacterial Lipopolysaccharides and blood plasma proteins on modified carbonized materials N2 - Bacterial lipopolysaccharides (endotoxins) show strong biological effects at very low concentrations in human beings and many animals when entering the blood stream. These include affecting structure and function of organs and cells, changing metabolic functions, raising body temperature, triggering the coagulation cascade, modifying hemodynamics and causing septic shock. Because of this toxicity, the removal of even minute amounts is essential for safe parenteral administration of drugs and also for septic shock patients' care. The absence of a general method for endotoxin removal from liquid interfaces urgently requires finding new methods and materials to overcome this gap. Nanostructured carbonized plant parts is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study was comparative measurement of endotoxin- and blood proteins-related adsorption rate and adsorption capacity for different carboneous materials produced at different temperatures and under different surface modifications. As a main surface modificator, positively cbarged polymer, polyethileneimine (PEl) was used. Activated carbon materials showed good adsorption properties for LPS and some proteins used in the experiments. During the batch experiments, several techniques (dust removal, autoclaving) were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. Modification of the surface apparently has not affected hemoglobin binding to the adsorbent's surface. Obtained adsorption isotherms can be used as a powerful tool for designing of future column-based setups for blood purification from LPS, which is especially important for septic shock treatment. KW - Kohlenstofffaser KW - Lipopolysaccharide KW - nanostrukturierte carbonisierte Pflanzenteile KW - lipopolysaccharides KW - nanostructured carbonized plant parts Y1 - 2010 ER - TY - JOUR A1 - Akimbekov, Nuraly Shardarbekovich A1 - Mansurov, Zulkhair A1 - Jandosov, J. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül A1 - Zhubanova, Azhar A. T1 - Wound healing activity of carbonized rice husk N2 - The carbonized rice husk (CRH) was evaluated for its wound healing activity in rats using excision models. In this study, the influences of CRH on wound healing in rat skin in vivo and cellular behavior of human dermal fibroblasts in vitro were investigated. The obtained results showed that the CRH treatment promoted wound epithelization in rats and exhibited moderate inhibition of cell proliferation in vitro. CRH with lanolin oil treated wounds were found to epithelize faster as compared to controls. KW - Wundheilung KW - Epithel KW - Fibroblast KW - carbonized rice husk KW - wound healing KW - epithelization KW - human dermal fibroblasts Y1 - 2013 PB - Trans Tech Publications, Switzerland CY - Bäch ER -