TY - JOUR A1 - Sadykov, Rustam A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Porst, Dariusz A1 - Linder, Peter A1 - Kayser, Peter A1 - Artmann, Gerhard A1 - Savitskaya, Irina A1 - Zhubanova, Azhar T1 - Oral lead exposure induces dysbacteriosis in rats JF - Journal of Occupational Health. 51 (2009) (2009), H. 1 Y1 - 2009 SN - 1348-9585 SP - 64 EP - 73 ER - TY - CHAP A1 - Digel, Ilya A1 - Mansurov, Zulkhair A1 - Biisenbaev, Makhmut A1 - Savitskaya, Irina A1 - Kistaubaeva, Aida A1 - Akimbekov, Nuraly A1 - Zhubanova, Azhar ED - Hu, Ning T1 - Heterogeneous Composites on the Basis of Microbial Cells and Nanostructured Carbonized Sorbents T2 - Composites and Their Applications N2 - The fact that microorganisms prefer to grow on liquid/solid phase surfaces rather than in the surrounding aqueous phase was noticed long time ago [1]. Virtually any surface – animal, mineral, or vegetable – is a subject for microbial colonization and subsequent biofilm formation. It would be adequate to name just a few notorious examples on microbial colonization of contact lenses, ship hulls, petroleum pipelines, rocks in streams and all kinds of biomedical implants. The propensity of microorganisms to become surface-bound is so profound and ubiquitous that it vindicates the advantages for attached forms over their free-ranging counterparts [2]. Indeed, from ecological and evolutionary standpoints, for many microorganisms the surface-bound state means dwelling in nutritionally favorable, non-hostile environments [3]. Therefore, in most of natural and artificial ecosystems surface-associated microorganisms vastly outnumber organisms in suspension and often organize into complex communities with features that differ dramatically from those of free cells [4]. Y1 - 2012 SN - 978-953-51-0706-4 U6 - http://dx.doi.org/10.5772/47796 SP - 249 EP - 272 PB - Intech CY - London ER - TY - JOUR A1 - Akimbekov, Nuraly A1 - Qiao, Xiaohui A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Zhubanova, Azhar T1 - The effect of leonardite-derived amendments on soil microbiome structure and potato yield JF - Agriculture N2 - Humic substances originating from various organic matters can ameliorate soil properties, stimulate plant growth, and improve nutrient uptake. Due to the low calorific heating value, leonardite is rather unsuitable as fuel. However, it may serve as a potential source of humic substances. This study was aimed at characterizing the leonardite-based soil amendments and examining the effect of their application on the soil microbial community, as well as on potato growth and tuber yield. A high yield (71.1%) of humic acid (LHA) from leonardite has been demonstrated. Parental leonardite (PL) and LHA were applied to soil prior to potato cultivation. The 16S rRNA sequencing of soil samples revealed distinct relationships between microbial community composition and the application of leonardite-based soil amendments. Potato tubers were planted in pots in greenhouse conditions. The tubers were harvested at the mature stage for the determination of growth and yield parameters. The results demonstrated that the LHA treatments had a significant effect on increasing potato growth (54.9%) and tuber yield (66.4%) when compared to the control. The findings highlight the importance of amending leonardite-based humic products for maintaining the biogeochemical stability of soils, for keeping their healthy microbial community structure, and for increasing the agronomic productivity of potato plants. Y1 - 2020 U6 - http://dx.doi.org/10.3390/agriculture10050147 VL - 10 IS - Art. 147 SP - 1 EP - 17 PB - MDPI CY - Basel ER -