TY - JOUR A1 - Kronhardt, Valentina A1 - Alexopoulos, Spiros A1 - Reißel, Martin A1 - Sattler, Johannes, Christoph A1 - Hoffschmidt, Bernhard A1 - Hänel, Matthias A1 - Doerbeck, Till T1 - High-temperature thermal storage system for solar tower power plants with open-volumetric air receiver simulation and energy balancing of a discretized model JF - Energy procedia N2 - This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.egypro.2014.03.094 SN - 1876-6102 (E-Journal) ; 1876-6102 (Print) VL - 49 SP - 870 EP - 877 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rau, Christoph A1 - Alexopoulos, Spiros A1 - Breitbach, Gerd A1 - Hoffschmidt, Bernhard A1 - Latzke, Markus A1 - Sattler, Johannes, Christoph T1 - Transient simulation of a solar-hybrid tower power plant with open volumetric receiver at the location Barstow JF - Energy procedia : proceedings of the SolarPACES 2013 International Conference N2 - In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine's flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well as in any intermediate load levels where the solar portion can vary between 0 to 100%. The simulated plant is based on the configuration of a solar-hybrid power tower project, which is in planning for a site in Northern Algeria. The meteorological data for Barstow-Daggett was taken from the software meteonorm. The solar power tower simulation tool has been developed in the simulation environment MATLAB/Simulink and is validated. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.egypro.2014.03.157 SN - 1876-6102 VL - 49 SP - 1481 EP - 1490 PB - Elsevier CY - Amsterdam ER - TY - RPRT A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros T1 - Entwicklung der Designvoraussetzungen für ein hybrides Solarthermisches Kraftwerk : Kurztitel: HybSol ; Abschlussbericht ; Berichtszeitraum: 01.03.2007 - 31.10.2010 ; [Förderprogramm: FHprofUnt] Y1 - 2011 PB - Solar-Inst. CY - Jülich ER - TY - RPRT A1 - Hoffschmidt, Bernhard T1 - HelioScan : Machbarkeitsstudie zur Entwicklung einer radargestützten Positionsregelung von Heliostatenfeldern für Solarturmkraftwerke : Schlussbericht : Laufzeit: 01.07.2010 - 31.12.2012 : Förderkennzeichen 325234A Y1 - 2013 PB - Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit CY - Berlin ER - TY - JOUR A1 - Vieira da Silva, Maria Eugenia A1 - Schwarzer, Klemens A1 - Hoffschmidt, Bernhard A1 - Pinheiro Rodrigues, Frederico A1 - Schwarzer, Tarik A1 - Costa Rocha, Paulo Alexandre T1 - Mass transfer correlation for evaporation–condensation thermal process in the range of 70 °C–95 °C JF - Renewable energy Y1 - 2013 SN - 1879-0682 (E-Journal); 0960-1481 (Print) VL - Vol. 53 SP - 174 EP - 179 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard T1 - Advances in solar tower technology JF - Wiley interdisciplinary reviews : Energy and Environment : WIREs Y1 - 2017 U6 - http://dx.doi.org/10.1002/wene.217 SN - 2041-840X VL - 6 IS - 1 SP - 1 EP - 19 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Teixeira Boura, Cristiano José A1 - Niederwestberg, Stefan A1 - McLeod, Jacqueline A1 - Herrmann, Ulf A1 - Hoffschmidt, Bernhard T1 - Development of heat exchanger for high temperature energy storage with bulk materials T2 - AIP Conference Proceedings Y1 - 2016 U6 - http://dx.doi.org/10.1063/1.4949106 VL - 1734 IS - 1 SP - 050008-1 EP - 050008-7 ER - TY - CHAP A1 - Gorzalka, Philip A1 - Dahlke, Dennis A1 - Göttsche, Joachim A1 - Israel, Martin A1 - Patel, Dhruvkumar A1 - Prahl, Christoph A1 - Schmiedt, Jacob Estevam A1 - Frommholz, Dirk A1 - Hoffschmidt, Bernhard A1 - Linkiewicz, Magdalena T1 - Building Tomograph–From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input T2 - EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria Y1 - 2018 ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Caminos, R.A. Chico A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating Solar Power T2 - Earth systems and environmental sciences N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Concentrating solar power KW - Fresnel power plant KW - Gas turbine Y1 - 2021 SN - 978-0-12-409548-9 U6 - http://dx.doi.org/10.1016/B978-0-12-819727-1.00089-3 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Chico Caminos, R.A. A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating solar power T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Gas turbine KW - Hybridization KW - Power conversion systems Y1 - 2022 SN - 978-0-12-819734-9 SP - 670 EP - 724 PB - Elsevier CY - Amsterdam ER -