TY - JOUR A1 - Hasegawa, Maki A1 - Kapelyukh, Yury A1 - Tahara, Harunobu A1 - Seibler, Jost A1 - Rode, Anja A1 - Krueger, Sylvia A1 - Lee, Dongtao N. A1 - Wolf, C. Roland A1 - Scheer, Nico T1 - Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line JF - Molecular Pharmacology Y1 - 2011 U6 - http://dx.doi.org/10.1124/mol.111.071845 SN - 1521-0111 VL - 80 IS - 33 SP - 518 EP - 528 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Scheer, Nico A1 - Snaith, Mike A1 - Wolf, C. Roland A1 - Seibler, Jost T1 - Generation and utility of genetically humanized mouse models JF - Drug Discovery Today Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.drudis.2013.07.007 SN - 1359-6446 VL - Vol 18 IS - 23-24 SP - 1200 EP - 1211 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scheer, Nico A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Oswald, Stefan A1 - Busch, Diana A1 - Mclaughlin, Lesley A. A1 - Lin, De A1 - Henderson, Colin J. A1 - Wolf, C. Roland T1 - Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model JF - Drug Metabolism and Disposition Y1 - 2015 U6 - http://dx.doi.org/10.1124/dmd.115.065656 SN - 1521-009x VL - 43 IS - 11 SP - 1679 EP - 1690 PB - ASPET CY - Bethesda ER - TY - JOUR A1 - Henderson, Colin J. A1 - Mclaughlin, Lesley A. A1 - Scheer, Nico A1 - Stanley, Lesley A. A1 - Wolf, C. Roland T1 - Cytochrome b5 Is a Major Determinant of Human Cytochrome P450 CYP2D6 and CYP3A4 Activity In Vivo s JF - Molecular Pharmacology Y1 - 2015 U6 - http://dx.doi.org/10.1124/mol.114.097394 SN - 1521-0111 VL - 87 IS - 4 SP - 733 EP - 739 PB - ASPET CY - Bethesda ER - TY - JOUR A1 - Luisier, Raphaëlle A1 - Lempiäinen, Harri A1 - Scherbichler, Nina A1 - Braeuning, Albert A1 - Geissler, Miriam A1 - Dubost, Valerie A1 - Müller, Arne A1 - Scheer, Nico A1 - Chibout, Salah-Dine A1 - Hara, Hisanori A1 - Picard, Frank A1 - Theil, Diethilde A1 - Couttet, Philippe A1 - Vitobello, Antonio A1 - Grenet, Olivier A1 - Grasl-Kraupp, Bettina A1 - Ellinger-Ziegelbauer, Heidrung A1 - Thomson, John P. A1 - Meehan, Richard R. A1 - Elcombe, Clifford R. A1 - Henderson, Colin J. A1 - Wolf, C. Roland A1 - Schwarz, Michael A1 - Moulin, Pierre A1 - Terranova, Remi A1 - Moggs, Jonathan G. T1 - Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors JF - Toxicological Sciences N2 - The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CARᴷᴼ-PXRᴷᴼ), double humanized CAR and PXR (CARʰ-PXRʰ), and wild-type C57BL/6 mice. Wild-type and CARʰ-PXRʰ mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CARᴷᴼ-PXRᴷᴼ mouse livers and largely reversible in wild-type and CARʰ-PXRʰ mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CARʰ-PXRʰ mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB. Y1 - 2014 U6 - http://dx.doi.org/https://doi.org/10.1093/toxsci/kfu038 SN - 1094-2025 VL - 139 IS - 2 SP - 501 EP - 511 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Scheer, Nico A1 - Balimane, Praveen A1 - Hayward, Michael D. A1 - Buechel, Sandra A1 - Kauselmann, Gunther A1 - Wolf, C. Roland T1 - Generation and Characterization of a Novel Multidrug Resistance Protein 2 Humanized Mouse Line JF - Drug Metabolism and Disposition N2 - The multidrug resistance protein (MRP) 2 is predominantly expressed in liver, intestine, and kidney, where it plays an important role in the excretion of a range of drugs and their metabolites or endogenous compounds into bile, feces, and urine. Mrp knockout [Mrp2(−/−)] mice have been used recently to study the role of MRP2 in drug disposition. Here, we describe the first generation and initial characterization of a mouse line humanized for MRP2 (huMRP2), which is nulled for the mouse Mrp2 gene and expresses the human transporter in the organs and cell types where MRP2 is normally expressed. Analysis of the mRNA expression for selected cytochrome P450 and transporter genes revealed no major changes in huMRP2 mice compared with wild-type controls. We show that human MRP2 is able to compensate functionally for the loss of the mouse transporter as demonstrated by comparable bilirubin levels in the humanized mice and wild-type controls, in contrast to the hyperbilirubinemia phenotype that is observed in MRP2(−/−) mice. The huMRP2 mouse provides a model to study the role of the human transporter in drug disposition and in assessing the in vivo consequences of inhibiting this transporter by compounds interacting with human MRP2. Y1 - 2012 U6 - http://dx.doi.org/10.1124/dmd.112.047605 SN - 1521-0111 VL - 40 IS - 11 SP - 2212 EP - 2218 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Scheer, Nico A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Buechel, Sandra A1 - Wolf, C. Roland T1 - Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines JF - Molecular Pharmacology N2 - Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction. Y1 - 2012 U6 - http://dx.doi.org/10.1124/mol.112.080036 SN - 1521-0111 VL - 82 IS - 6 SP - 1022 EP - 1029 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Scheer, Nico A1 - Henderson, Colin James A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Mclaren, Aileen W. A1 - MacLeod, Alastair Kenneth A1 - Lin, De A1 - Wright, Jayne A1 - Stanley, Lesley A1 - Wolf, C. Roland T1 - An extensively humanised mouse model to predict pathways of drug disposition, drug/drug interactions, and to facilitate the design of clinical trials JF - Drug Metabolism and Disposition Y1 - 2019 U6 - http://dx.doi.org/10.1124/dmd.119.086397 IS - Early view ER - TY - JOUR A1 - Scheer, Nico A1 - Wolf, C. Roland T1 - Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications JF - Xenobiotica N2 - 1. Drug metabolizing enzymes and transporters play important roles in the absorption, metabolism, tissue distribution and excretion of various compounds and their metabolites and thus can significantly affect their efficacy and safety. Furthermore, they can be involved in drug–drug interactions which can result in adverse responses, life-threatening toxicity or impaired efficacy. Significant species differences in the interaction of compounds with drug metabolizing enzymes and transporters have been described. 2. In order to overcome the limitation of animal models in accurately predicting human responses, a large variety of mouse models humanized for drug metabolizing enzymes and to a lesser extent drug transporters have been created. 3. This review summarizes the literature describing these mouse models and their key applications in studying the role of drug metabolizing enzymes and transporters in drug bioavailability, tissue distribution, clearance and drug–drug interactions as well as in human metabolite testing and risk assessment. 4. Though such humanized mouse models have certain limitations, there is great potential for their use in basic research and for testing and development of new medicines. These limitations and future potentials will be discussed. KW - transporters KW - human metabolites KW - drug metabolising enzymes KW - drug–drug interactions KW - bioavailability Y1 - 2014 U6 - http://dx.doi.org/10.3109/00498254.2013.815831 SN - 1366-5928 VL - 44 IS - 2 SP - 96 EP - 108 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Scheer, Nico A1 - Wolf, C. Roland T1 - Xenobiotic receptor humanized mice and their utility JF - Drug Metabolism Reviews Y1 - 2013 U6 - http://dx.doi.org/10.3109/03602532.2012.738687 SN - 1097-9883 IS - 1 SP - 110 EP - 121 PB - Taylor & Francis CY - London ER -