TY - CHAP A1 - Ballmann, Josef A1 - Dafnis, Athanasios A1 - Braun, Carsten A1 - Korsch, Helge A1 - Reimerdes, Hans-Günther A1 - Braun, Carsten A1 - Ballmann, Josef T1 - The HIRENASD project: High Reynolds number aerostructural dynamics experiments in the European Transonic Wind Tunnel (ETW) T2 - ICAS 2006 proceedings : 25th Congress of the International Council of the Aeronautical Sciences ; Hamburg, Germany, 3 - 8 September, 2006 : 25th International Congress of Aeronautical Sciences Y1 - 2006 SN - 0-9533991-7-6 SP - Paper No. 2006-5.11.2 PB - Optimage CY - Edinburgh ER - TY - CHAP A1 - Kapoor, Hrshi A1 - Boller, Christian A1 - Giljohann, Sebastian A1 - Braun, Carsten T1 - Strategies for structural health monitoring implementation potential assessment in aircraft operational life extension considerations T2 - 2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany Y1 - 2010 SN - 978-3-940283-28-3 PB - Dt. Gesellschaft für Zerstörungsfreie Prüfung CY - Berlin ER - TY - CHAP A1 - Kapoor, Hrshi A1 - Braun, Carsten A1 - Boller, Christian ED - Casciati, Fabio T1 - Modelling and optimisation of maintenance intervals to realize structural health monitoring applications on aircraft T2 - Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM] Y1 - 2010 SN - 978-1-60595-024-2 SP - 55 EP - 63 PB - DEStech Publ. CY - Lancaster, Pa. ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Wellmer, Georg A1 - Behr, Marek A1 - Ballmann, Josef T1 - Development of a modular method for computational aero-structural analysis of aircraft T2 - Summary of flow modulation and fluid-structure interaction findings. Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany, 1997-2008 / ed.: Wolfgang Schröder. Notes on numerical fluid mechanics and multidisciplinary design. Vol. 109 Y1 - 2010 SN - 978-3-642-04087-0 SP - 205 EP - 238 PB - Springer CY - Berlin ER - TY - CHAP A1 - Reimer, Lars A1 - Wellmer, Georg A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Computational methods for aero-structural analysis and optimisation of aircrafts based on reduced-order structural models T2 - MEGADESIGN and MegaOpt - German initiatives for aerodynamic simulation and optimization in aircraft design. Results of the closing symposium of the MEGADESIGN and MegaOpt projects, Braunschweig, Germany, 23 - 24 May, 2007 / Norbert Kroll ... (Eds.) Notes on numerical fluid mechanics and multidisciplinary design. Vol. 107 N2 - In this part of the MEGADESIGN project, aeroelastic effects are introduced into the aerodynamic analysis of aircrafts by coupling DLR’s flow solvers TAU and FLOWer to a Timoshenko-beam solver. The emerging aeroelastic solvers and a method for the automatic identification of Timoshenko-beam models for wing-box structures were integrated into a simulation environment enabling the combined optimisation of aerodynamic wing shape and structure. Y1 - 2009 SN - 978-3-642-04092-4 SP - 135 EP - 150 PB - Springer CY - Berlin ER - TY - CHAP A1 - Braun, Carsten T1 - Ein modulares Verfahren für die numerische aeroelastische Analyse von Luftfahrzeugen T2 - Motto: Wissen und Visionen für ein nachhaltiges Wachstum : Deutscher Luft- und Raumfahrtkongress 2008, Darmstadt, 23. bis 25. September 2008 / Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V. (DGLR). DGLR-Jahrbuch. 2008 Y1 - 2008 SP - 787 EP - 796 PB - DGLR CY - Bonn ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Chen, B.-H. A1 - Ballmann, Josef T1 - Computational aeroelastic analysis and design of the HIRENASD wind tunnel wing model and tests T2 - Proceedings / IFASD 2007, CEAS/AIAA/KTH International Forum on Aeroelasticity and Structural Dynamics : June 18 - 21, 2007, Stockholm, Sweden Y1 - 2007 PB - KTH CY - Stockholm ER - TY - CHAP A1 - Wellmer, Georg A1 - Chen, B.-H. A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Numerical prediction of aeroelastic effects on twin-sting-rig mounted models for rear fuselage and empennage flow investigation in transonic windtunnel T2 - Proceedings / IFASD 2007, CEAS/AIAA/KTH International Forum on Aeroelasticity and Structural Dynamics, June 18 - 21, 2007, Stockholm, Sweden Y1 - 2007 PB - KTH CY - Stockholm ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Computational study of the aeroelastic equilibrium configuration of a swept wind tunnel wing model in subsonic flow T2 - High performance computing in science and engineering '06. Transactions of the High Performance Computing Center Stuttgart (HLRS) 2006 / Wolfgang E. Nagel ... Eds. N2 - In the Collaborative Research Center SFB 401 at RWTH Aachen University, the numerical aeroelastic method SOFIA for direct numerical aeroelastic simulation is being progressively developed. Numerical results obtained by applying SOFIA were compared with measured data of static and dynamic aeroelastic wind tunnel tests for an elastic swept wing in subsonic flow. Y1 - 2007 SN - 978-3-540-36165-7 SP - 421 EP - 434 PB - Springer CY - Berlin [u.a.] ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Analysis of the static and dynamic aero-structural response of an elastic swept wing model by direct aeroelastic simulation T2 - ICAS 2006 proceedings : 25th Congress of the International Council of the Aeronautical Sciences ; Hamburg, Germany, 3 - 8 September, 2006 : 25th International Congress of Aeronautical Sciences Y1 - 2006 SN - 0-9533991-7-6 SP - Paper No. 2006-10.3.3 PB - Optimage CY - Edinburgh ER - TY - CHAP A1 - Korsch, Helge A1 - Dafnis, Athanasios A1 - Reimerdes, Hans-Günther A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Dynamic qualification of the HIRENASD elastic wing model T2 - Motto: Luft- und Raumfahrt: Lehre, Forschung, Industrie - gemeinsam innovativ. Deutscher Luft- und Raumfahrtkongress 2006 : Braunschweig, 06. bis 09. November 2006. Jahrbuch / Deutsche Gesellschaft für Luft- und Raumfahrt. 2006 Y1 - 2006 SP - 1441 EP - 1450 PB - Dt. Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth (DGLR) CY - Bonn ER - TY - CHAP A1 - Braun, Carsten A1 - Boucke, Alexander A1 - Ballmann, Josef T1 - Numerical prediction of the wing deformation of a high speed transport aircraft type wind tunnel model by direct aeroelastic simulation T2 - Conference proceedings : CEAS/AIAA/DGLR International Forum on Aeroelasticity and Structural Dynamics IFASD 2005 : München, June 28 - July 1, 2005. DGLR-Bericht. 2005,04 Y1 - 2005 SN - 3-932182-43-X PB - DGLR CY - Bonn ER - TY - CHAP A1 - Braun, Carsten A1 - Boucke, Alexander A1 - Ballmann, Josef T1 - Numerical study of the influence of dynamic pressure and deflected ailerons on the deformation of a high speed wing model T2 - High performance computing in science and engineering '04. Transactions of the High Performance Computing Center Stuttgart (HLRS) 2004 / Eds.: Egon Krause ... Y1 - 2005 SN - 3-540-22943-4 SP - 225 EP - 236 PB - Springer CY - Berlin ER - TY - CHAP A1 - Ballmann, Josef A1 - Boucke, Alexander A1 - Braun, Carsten T1 - Aeroelastic sensitivity in the transonic regime T2 - Symposium Transsonicum IV : proceedings of the IUTAM symposium held in Göttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73 Y1 - 2003 SN - 978-94-010-3998-7 SP - 225 EP - 236 PB - Kluwer Academic CY - Dordrecht ER - TY - CHAP A1 - Braun, Carsten A1 - Boucke, Alexander A1 - Hanke, M. A1 - Karavas, Alexandros A1 - Ballmann, Josef T1 - Prediction of the model deformation of a high speed transport aircraft type wing by direct aeroelastic simulation T2 - High performance computing in science and engineering '03. Transactions of the High Performance Computing Center Stuttgart (HLRS) 2003 / Eds.: Egon Krause ... Y1 - 2003 SN - 978-3-540-40850-5 SP - 331 EP - 342 PB - Springer CY - Berlin ER - TY - CHAP A1 - Britten, G. A1 - Braun, Carsten A1 - Hesse, M. A1 - Ballmann, Josef T1 - Computational aeroelasticity with reduced structural models T2 - Flow modulation and fluid-structure interaction at airplane wings : research results of the Collaborative Research Center SFB 401 at RWTH Aachen, University of Technology, Aachen, Germany / Josef Ballmann (Ed.) Notes on numerical fluid mechanics and multidisciplinary design. Vol. 84 Y1 - 2003 SN - 3-540-40209-8 SP - 275 EP - 299 PB - Springer CY - Berlin ER - TY - RPRT A1 - Reimer, Lars A1 - Wellmer, Georg A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Aerodynamische Simulation und Optimierung in der Flugzeugentwicklung. Teilvorhabenbezeichnung: Aerodynamische Optimierung unter Berücksichtigung von Struktureigenschaften auf der Basis reduzierter Strukturmodelle, Verbundvorhaben MEGADESIGN. Schlussbericht. Berichtszeitraum: 01.06.2003-31.05.2007. BMBF-Forschungsbericht Y1 - 2007 ER - TY - BOOK A1 - Braun, Carsten T1 - Ein modulares Verfahren für die numerische aeroelastische Analyse von Luftfahrzeugen N2 - Aachen, Techn. Hochschule, Diss., 2007 Y1 - 2007 ER - TY - JOUR A1 - Neu, Eugen A1 - Janser, Frank A1 - Khatibi, Akbar A. A1 - Braun, Carsten A1 - Orifici, Adrian C. T1 - Operational Modal Analysis of a wing excited by transonic flow JF - Aerospace Science and Technology N2 - Operational Modal Analysis (OMA) is a promising candidate for flutter testing and Structural Health Monitoring (SHM) of aircraft wings that are passively excited by wind loads. However, no studies have been published where OMA is tested in transonic flows, which is the dominant condition for large civil aircraft and is characterized by complex and unique aerodynamic phenomena. We use data from the HIRENASD large-scale wind tunnel experiment to automatically extract modal parameters from an ambiently excited wing operated in the transonic regime using two OMA methods: Stochastic Subspace Identification (SSI) and Frequency Domain Decomposition (FDD). The system response is evaluated based on accelerometer measurements. The excitation is investigated from surface pressure measurements. The forcing function is shown to be non-white, non-stationary and contaminated by narrow-banded transonic disturbances. All these properties violate fundamental OMA assumptions about the forcing function. Despite this, all physical modes in the investigated frequency range were successfully identified, and in addition transonic pressure waves were identified as physical modes as well. The SSI method showed superior identification capabilities for the investigated case. The investigation shows that complex transonic flows can interfere with OMA. This can make existing approaches for modal tracking unsuitable for their application to aircraft wings operated in the transonic flight regime. Approaches to separate the true physical modes from the transonic disturbances are discussed. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.ast.2015.11.032 SN - 1270-9638 VL - 49 SP - 73 EP - 79 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schildt, P. A1 - Braun, Carsten A1 - Marcocca, P. T1 - Flight testing the extra 330LE flying testbed T2 - 48th Annual International Symposium of the Society of Flight Test Engineers 2017 Y1 - 2017 SN - 978-151085387-4 N1 - 48th Annual International Symposium of the Society of Flight Test Engineers 2017, SFTE 2017; Destin; United States; 30 October 2017 through 2 November 2017 SP - 349 EP - 362 ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten T1 - Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems T2 - Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen Y1 - 2018 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft T2 - 67. Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten T1 - Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems T2 - Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 U6 - http://dx.doi.org/10.25967/480227 ER - TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bill, C. T1 - On the flight performance impact of landing gear drag reduction methods for unmanned air vehicles JF - Deutscher Luft- und Raumfahrtkongress 2018 N2 - The flight performance impact of three different landing gear configurations on a small, fixed-wing UAV is analyzed with a combination of RANS CFD calculations and an incremental flight performance algorithm. A standard fixed landing gear configuration is taken as a baseline, while the influence of retracting the landing gear or applying streamlined fairings is investigated. A retraction leads to a significant parasite drag reduction, while also fairings promise large savings. The increase in lift-to-drag ratio is reduced at high lift coefficients due to the influence of induced drag. All configurations are tested on three different design missions with an incremental flight performance algorithm. A trade-off study is performed using the retracted or faired landing gear's weight increase as a variable. The analysis reveals only small mission performance gains as the aerodynamic improvements are negated by weight penalties. A new workflow for decision-making is presented that allows to estimate if a change in landing gear configuration is beneficial for a small UAV. Y1 - 2018 U6 - http://dx.doi.org/10.25967/480058 PB - DGLR CY - Bonn ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Case studies in initial sizing for hybrid-electric general aviation aircraft T2 - 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio Y1 - 2018 U6 - http://dx.doi.org/10.2514/6.2018-5005 ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs JF - CEAS Aeronautical Journal N2 - One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost–benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters. Y1 - 2018 U6 - http://dx.doi.org/10.1007/s13272-018-0352-x SN - 1869-5582 print SN - 1869-5590 online VL - 10 IS - 3 SP - 843 PB - Springer ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - The Impact of Electric Propulsion on the Performance of VTOL UAVs T2 - Deutscher Luft- und Raumfahrtkongress 2017, DLRK , München Y1 - 2017 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft T2 - Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea Y1 - 2017 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - An Initial Sizing Methodology for Hybrid-Electric Light Aircraft T2 - AIAA AVIATION Forum 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, June 25 - 29, 2018 Y1 - 2018 U6 - http://dx.doi.org/10.2514/6.2018-4229 ER - TY - CHAP A1 - Schildt, Philipp A1 - Marzocca, Pier A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Keimer, Jona T1 - Effects of atmospheric excitation on vibration based condition monitoring methods for hybrid-electric aircraft propulsion systems T2 - AIAC 2018: 18th Australian International Aerospace Congress: HUMS - 11th Defence Science and Technology (DST) International Conference on Health and Usage Monitoring (HUMS 2019): ISSFD - 27th International Symposium on Space Flight Dynamics (ISSFD) Y1 - 2019 SN - 9781925627213 SP - 923 EP - 928 ER - TY - CHAP A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bil, Cees T1 - On the Applicability of Empirical Drag Estimation Methods for Unmanned Air Vehicle Design Read More: https://arc.aiaa.org/doi/10.2514/6.2018-3192 T2 - 2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum Y1 - 2018 U6 - http://dx.doi.org/10.2514/6.2018-3192 SN - 1533-385X N1 - AIAA 2018-3192 SP - Article 3192 ER - TY - JOUR A1 - Schildt, Ph. A1 - Braun, Carsten A1 - Marzocca, P. T1 - Metric evaluating potentials of condition-monitoring approaches for hybrid electric aircraft propulsion systems JF - CEAS Aeronautical Journal Y1 - 2019 U6 - http://dx.doi.org/10.1007/s13272-019-00411-3 SN - 1869-5590 SP - 1 EP - 14 PB - Springer CY - Berlin ER - TY - JOUR A1 - Finger, Felix A1 - Bil, Cees A1 - Braun, Carsten T1 - Initial Sizing Methodology for Hybrid-Electric General Aviation Aircraft JF - Journal of Aircraft Y1 - 2019 U6 - http://dx.doi.org/10.2514/1.C035428 SN - 1533-3868 VL - 57 IS - 2 SP - 245 EP - 255 ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 ER - TY - CHAP A1 - Rings, René A1 - Ludowicy, Jonas A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Sensitivity Analysis of General Aviation Aircraft with Parallel Hybrid-Electric Propulsion Systems T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft T2 - AIAA Scitech 2019 Forum Y1 - 2019 U6 - http://dx.doi.org/10.2514/6.2019-1812 N1 - AIAA Scitech Forum, 2019; San Diego; United States; 7 January 2019 through 11 January 2019 ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - A highly automated method for simulating airfoil characteristics at low Reynolds number using a RANS - transition approach T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany Y1 - 2019 U6 - http://dx.doi.org/10.25967/490026 SP - 1 EP - 14 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Mass, Primary Energy, and Cost - The Impact of Optimization Objectives on the Initial Sizing of Hybrid-Electric General Aviation Aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany Y1 - 2019 U6 - http://dx.doi.org/10.25967/490012 SP - 1 EP - 17 ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Airfoil drag at low-to-medium reynolds numbers: A novel estimation method JF - AIAA Journal N2 - This paper presents a novel method for airfoil drag estimation at Reynolds numbers between 4×10⁵ and 4×10⁶. The novel method is based on a systematic study of 40 airfoils applying over 600 numerical simulations and considering natural transition. The influence of the airfoil thickness-to-chord ratio, camber, and freestream Reynolds number on both friction and pressure drag is analyzed in detail. Natural transition significantly affects drag characteristics and leads to distinct drag minima for different Reynolds numbers and thickness-to-chord ratios. The results of the systematic study are used to develop empirical correlations that can accurately predict an airfoil drag at low-lift conditions. The new approach estimates a transition location based on airfoil thickness-to-chord ratio, camber, and Reynolds number. It uses the transition location in a mixed laminar–turbulent skin-friction calculation, and corrects the skin-friction coefficient for separation effects. Pressure drag is estimated separately based on correlations of thickness-to-chord ratio, camber, and Reynolds number. The novel method shows excellent accuracy when compared with wind-tunnel measurements of multiple airfoils. It is easily integrable into existing aircraft design environments and is highly beneficial in the conceptual design stage. Y1 - 2020 U6 - http://dx.doi.org/10.2514/1.J058983 SN - 1533-385X VL - 58 IS - 7 SP - 2791 EP - 2805 PB - AIAA CY - Reston, Va. ER - TY - RPRT A1 - Thoma, Andreas A1 - Laarmann, Lukas A1 - Merkens, Torsten A1 - Franzke, Till A1 - Möhren, Felix A1 - Buttermann, Lilly A1 - van der Weem, Dirk A1 - Fischer, Maximilian A1 - Misch, Philipp A1 - Böhme, Mirijam A1 - Röth, Thilo A1 - Hebel, Christoph A1 - Ritz, Thomas A1 - Franke, Marina A1 - Braun, Carsten T1 - Entwicklung eines intermodalen Mobilitätskonzeptes für die Pilotregion NRW/Rhein-Maas Euregio und Schaffung voller Kundenakzeptanz durch Transfer von Standards aus dem PKW-Bereich auf ein Flugtaxi : Schlussbericht : Projektakronym: SkyCab (Kategorie B) : Laufzeit in Monaten: 6 : Hauptthema: Kategorie B: Innovative Ideen mit Bezug zu UAS/Flugtaxis Y1 - 2020 N1 - Förderkennzeichen BMVI 45UAS1027A-F PB - FH Aachen CY - Aachen ER - TY - JOUR A1 - Bergmann, Ole A1 - Möhren, Felix A1 - Braun, Carsten A1 - Janser, Frank T1 - On the influence of elasticity on swept propeller noise JF - AIAA SCITECH 2023 Forum N2 - High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation. Y1 - 2023 U6 - http://dx.doi.org/10.2514/6.2023-0210 N1 - Session: Propeller, Open Rotor, and Rotorcraft Noise II AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA ER - TY - CHAP A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the determination of harmonic propeller loads T2 - AIAA SCITECH 2023 Forum N2 - Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures. Y1 - 2023 U6 - http://dx.doi.org/10.2514/6.2023-2404 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 Y1 - 2020 ER - TY - CHAP A1 - Bergmann, Ole A1 - Götten, Falk A1 - Braun, Carsten A1 - Janser, Frank T1 - Comparison and evaluation of blade element methods against RANS simulations and test data T2 - CEAS Aeronautical Journal N2 - This paper compares several blade element theory (BET) method-based propeller simulation tools, including an evaluation against static propeller ground tests and high-fidelity Reynolds-Average Navier Stokes (RANS) simulations. Two proprietary propeller geometries for paraglider applications are analysed in static and flight conditions. The RANS simulations are validated with the static test data and used as a reference for comparing the BET in flight conditions. The comparison includes the analysis of varying 2D aerodynamic airfoil parameters and different induced velocity calculation methods. The evaluation of the BET propeller simulation tools shows the strength of the BET tools compared to RANS simulations. The RANS simulations underpredict static experimental data within 10% relative error, while appropriate BET tools overpredict the RANS results by 15–20% relative error. A variation in 2D aerodynamic data depicts the need for highly accurate 2D data for accurate BET results. The nonlinear BET coupled with XFOIL for the 2D aerodynamic data matches best with RANS in static operation and flight conditions. The novel BET tool PropCODE combines both approaches and offers further correction models for highly accurate static and flight condition results. KW - BET KW - CFD propeller simulation KW - Propeller aerodynamics KW - Actuator disk modelling KW - Propeller performance Y1 - 2022 U6 - http://dx.doi.org/10.1007/s13272-022-00579-1 SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Ole Bergmann VL - 13 SP - 535 EP - 557 PB - Springer CY - Wien ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Wind-tunnel and CFD investigations of UAV landing gears and turrets – Improvements in empirical drag estimation JF - Aerospace Science and Technology N2 - This paper analyzes the drag characteristics of several landing gear and turret configurations that are representative of unmanned aircraft tricycle landing gears and sensor turrets. A variety of these components were constructed via 3D-printing and analyzed in a wind-tunnel measurement campaign. Both turrets and landing gears were attached to a modular fuselage that supported both isolated components and multiple components at a time. Selected cases were numerically investigated with a Reynolds-averaged Navier-Stokes approach that showed good accuracy when compared to wind-tunnel data. The drag of main gear struts could be significantly reduced via streamlining their cross-sectional shape and keeping load carrying capabilities similar. The attachment of wheels introduced interference effects that increased strut drag moderately but significantly increased wheel drag compared to isolated cases. Very similar behavior was identified for front landing gears. The drag of an electro-optical and infrared sensor turret was found to be much higher than compared to available data of a clean hemisphere-cylinder combination. This turret drag was merely influenced by geometrical features like sensor surfaces and the rotational mechanism. The new data of this study is used to develop simple drag estimation recommendations for main and front landing gear struts and wheels as well as sensor turrets. These recommendations take geometrical considerations and interference effects into account. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.ast.2020.106306 SN - 1270-9638 VL - 107 IS - Art. 106306 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Improved Form Factor for Drag Estimation of Fuselages with Various Cross Sections JF - Journal of Aircraft N2 - The paper presents an aerodynamic investigation of 70 different streamlined bodies with fineness ratios ranging from 2 to 10. The bodies are chosen to idealize both unmanned and small manned aircraft fuselages and feature cross-sectional shapes that vary from circular to quadratic. The study focuses on friction and pressure drag in dependency of the individual body’s fineness ratio and cross section. The drag forces are normalized with the respective body’s wetted area to comply with an empirical drag estimation procedure. Although the friction drag coefficient then stays rather constant for all bodies, their pressure drag coefficients decrease with an increase in fineness ratio. Referring the pressure drag coefficient to the bodies’ cross-sectional areas shows a distinct pressure drag minimum at a fineness ratio of about three. The pressure drag of bodies with a quadratic cross section is generally higher than for bodies of revolution. The results are used to derive an improved form factor that can be employed in a classic empirical drag estimation method. The improved formulation takes both the fineness ratio and cross-sectional shape into account. It shows superior accuracy in estimating streamlined body drag when compared with experimental data and other form factor formulations of the literature. Y1 - 2020 U6 - http://dx.doi.org/10.2514/1.C036032 SN - 1533-3868 SP - 1 EP - 13 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft JF - Journal of Aircraft N2 - Until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial hybrid-electric, parallel hybrid-electric, fully electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This Paper provides insight into some factors that drive a new design toward either conventional or hybrid propulsion systems. General aviation aircraft, regional transport aircraft vertical takeoff and landing air taxis, and unmanned aerial vehicles are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their takeoff mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Only parallel-hybrid-electric powertrains are taken into account. Aeropropulsive interaction effects are neglected. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints. However, if the propulsion system is sized by a continuous power requirement, hybrid-electric systems offer hardly any benefit. Y1 - 2020 U6 - http://dx.doi.org/10.2514/1.C035897 SN - 1533-3868 VL - 57 IS - 5 PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Hippe, Jonas A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 Y1 - 2020 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, C. T1 - On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology. KW - Hybrid-electric aircraft KW - Aircraft design KW - Design rules KW - Green aircraft Y1 - 2019 SN - 978-981-13-3305-7 U6 - http://dx.doi.org/10.1007/978-981-13-3305-7_99 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1261 EP - 1272 PB - Springer CY - Singapore ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Braun, Carsten A1 - Havermann, Marc A1 - Bil, C. A1 - Gomez, F. T1 - Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg−1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV’s maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations. KW - Unmanned Air Vehicle KW - Geometry KW - Correlations KW - Statistics KW - Drag Y1 - 2019 SN - 978-981-13-3305-7 U6 - http://dx.doi.org/10.1007/978-981-13-3305-7_109 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1365 EP - 1381 PB - Springer CY - Singapore ER - TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, M. A1 - Bil, C. T1 - Full configuration drag estimation of short-to-medium range fixed-wing UAVs and its impact on initial sizing optimization JF - CEAS Aeronautical Journal N2 - The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used for surveillance, reconnaissance, and search and rescue missions. The aircraft is simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV’s parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft’s total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft. KW - Parasitic drag KW - UAV KW - CFD KW - Aircraft sizing Y1 - 2021 U6 - http://dx.doi.org/10.1007/s13272-021-00522-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Falk Götten VL - 12 SP - 589 EP - 603 PB - Springer CY - Berlin ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving the px4 avoid algorithm by bio-inspired flight strategies T2 - DLRK2020 - „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ Y1 - 2020 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. bis 3. September 2020 – Online, „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ ER - TY - JOUR A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Mass, primary energy, and cost: the impact of optimization objectives on the initial sizing of hybrid-electric general aviation aircraft JF - CEAS Aeronautical Journal N2 - For short take-off and landing (STOL) aircraft, a parallel hybrid-electric propulsion system potentially offers superior performance compared to a conventional propulsion system, because the short-take-off power requirement is much higher than the cruise power requirement. This power-matching problem can be solved with a balanced hybrid propulsion system. However, there is a trade-off between wing loading, power loading, the level of hybridization, as well as range and take-off distance. An optimization method can vary design variables in such a way that a minimum of a particular objective is attained. In this paper, a comparison between the optimization results for minimum mass, minimum consumed primary energy, and minimum cost is conducted. A new initial sizing algorithm for general aviation aircraft with hybrid-electric propulsion systems is applied. This initial sizing methodology covers point performance, mission performance analysis, the weight estimation process, and cost estimation. The methodology is applied to the design of a STOL general aviation aircraft, intended for on-demand air mobility operations. The aircraft is sized to carry eight passengers over a distance of 500 km, while able to take off and land from short airstrips. Results indicate that parallel hybrid-electric propulsion systems must be considered for future STOL aircraft. Y1 - 2020 U6 - http://dx.doi.org/10.1007/s13272-020-00449-8 SN - 1869-5590 N1 - Corresponding author: Felix Finger VL - 2020 IS - 11 SP - 713 EP - 730 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Finger, Felix A1 - de Vries, Reynard A1 - Vos, Roelof A1 - Braun, Carsten A1 - Bil, Cees T1 - A comparison of hybrid-electric aircraft sizing methods T2 - AIAA Scitech 2020 Forum Y1 - 2020 U6 - http://dx.doi.org/10.2514/6.2020-1006 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 SP - 1 EP - 13 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft T2 - AIAA SciTech Forum 2020, 06.01.2020 - 10.01.2020, Orlando Y1 - 2020 U6 - http://dx.doi.org/10.2514/6.2020-1502 ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Marino, Matthew A1 - Bil, Cees A1 - Havermann, Marc A1 - Braun, Carsten T1 - A review of guidelines and best practices for subsonic aerodynamic simulations using RANS CFD T2 - Asia-Pacific International Symposium on Aerospace Technology (APISAT), At Gold Coast, Australia, 04. - 06. Dezember 2019 Y1 - 2019 SN - 978-1-925627-40-4 ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Battery Performance on the Initial Sizing of Hybrid-Electric General Aviation Aircraft JF - Journal of Aerospace Engineering N2 - Studies suggest that hybrid-electric aircraft have the potential to generate fewer emissions and be inherently quieter when compared to conventional aircraft. By operating combustion engines together with an electric propulsion system, synergistic benefits can be obtained. However, the performance of hybrid-electric aircraft is still constrained by a battery’s energy density and discharge rate. In this paper, the influence of battery performance on the gross mass for a four-seat general aviation aircraft with a hybrid-electric propulsion system is analyzed. For this design study, a high-level approach is chosen, using an innovative initial sizing methodology to determine the minimum required aircraft mass for a specific set of requirements and constraints. Only the peak-load shaving operational strategy is analyzed. Both parallel- and serial-hybrid propulsion configurations are considered for two different missions. The specific energy of the battery pack is varied from 200 to 1,000 W⋅h/kg, while the discharge time, and thus the normalized discharge rating (C-rating), is varied between 30 min (2C discharge rate) and 2 min (30C discharge rate). With the peak-load shaving operating strategy, it is desirable for hybrid-electric aircraft to use a light, low capacity battery system to boost performance. For this case, the battery’s specific power rating proved to be of much higher importance than for full electric designs, which have high capacity batteries. Discharge ratings of 20C allow a significant take-off mass reduction aircraft. The design point moves to higher wing loadings and higher levels of hybridization if batteries with advanced technology are used. Y1 - 2020 U6 - http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0001113 SN - 1943-5525 VL - 33 IS - 3 PB - ASCE CY - Reston, Va. ER - TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach JF - SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021 Y1 - 2021 U6 - http://dx.doi.org/10.2514/6.2021-1535 SP - 1 EP - 12 PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Bertrand, Olivier A1 - Braun, Carsten ED - Vouloutsi, Vasiliki ED - Mura, Anna ED - Tauber, Falk ED - Speck, Thomas ED - Prescott, Tony J. ED - Verschure, Paul F. M. J. T1 - Evaluation of possible flight strategies for close object evasion from bumblebee experiments T2 - Living Machines 2020: Biomimetic and Biohybrid Systems KW - Obstacle avoidance KW - Bumblebees KW - Flight control KW - UAV KW - MAV Y1 - 2020 SN - 978-3-030-64312-6 U6 - http://dx.doi.org/10.1007/978-3-030-64313-3_34 N1 - 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings SP - 354 EP - 365 PB - Springer CY - Cham ER - TY - JOUR A1 - Koch, Christopher A1 - Böhnisch, Nils A1 - Verdonck, Hendrik A1 - Hach, Oliver A1 - Braun, Carsten T1 - Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications JF - Applied Sciences N2 - Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction. KW - Aeroelasticity KW - Flutter KW - Propeller whirl flutter KW - Unsteady aerodynamics KW - 1P hub loads Y1 - 2024 U6 - http://dx.doi.org/10.3390/app14020850 SN - 2076-3417 VL - 14 IS - 2 SP - 1 EP - 28 PB - MDPI CY - Basel ER - TY - JOUR A1 - Laarmann, Lukas A1 - Thoma, Andreas A1 - Misch, Philipp A1 - Röth, Thilo A1 - Braun, Carsten A1 - Watkins, Simon A1 - Fard, Mohammad T1 - Automotive safety approach for future eVTOL vehicles JF - CEAS Aeronautical Journal N2 - The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL’s crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented. KW - eVTOL development KW - eVTOL safety KW - Crashworthiness KW - Automotive safety approach KW - Full-vehicle crash test Y1 - 2023 U6 - http://dx.doi.org/10.1007/s13272-023-00655-0 SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Lukas Laarmann PB - Springer Nature ER - TY - JOUR A1 - Thoma, Andreas A1 - Thomessen, Karolin A1 - Gardi, Alessandro A1 - Fisher, A. A1 - Braun, Carsten T1 - Prioritising paths: An improved cost function for local path planning for UAV in medical applications JF - The Aeronautical Journal N2 - Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30%. These results show promise for further enhancements and to support broader applicability. KW - Path planning KW - Cost function KW - Multi-objective optimization Y1 - 2023 U6 - http://dx.doi.org/10.1017/aer.2023.68 SN - 0001-9240 (Print) SN - 2059-6464 (Online) IS - First View SP - 1 EP - 18 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Thomessen, Karolin A1 - Thoma, Andreas A1 - Braun, Carsten T1 - Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm JF - CEAS Aeronautical Journal N2 - Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9% in city-like worlds and reduces energy consumption by 28%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV. KW - UAV KW - Obstacle avoidance KW - Autonomy KW - Local path planning Y1 - 2023 U6 - http://dx.doi.org/10.1007/s13272-023-00691-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Karolin Thomessen PB - Springer CY - Wien ER - TY - JOUR A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the influence of elasticity on propeller performance: a parametric study JF - CEAS Aeronautical Journal N2 - The aerodynamic performance of propellers strongly depends on their geometry and, consequently, on aeroelastic deformations. Knowledge of the extent of the impact is crucial for overall aircraft performance. An integrated simulation environment for steady aeroelastic propeller simulations is presented. The simulation environment is applied to determine the impact of elastic deformations on the aerodynamic propeller performance. The aerodynamic module includes a blade element momentum approach to calculate aerodynamic loads. The structural module is based on finite beam elements, according to Timoshenko theory, including moderate deflections. Several fixed-pitch propellers with thin-walled cross sections made of both isotropic and non-isotropic materials are investigated. The essential parameters are varied: diameter, disc loading, sweep, material, rotational, and flight velocity. The relative change of thrust between rigid and elastic blades quantifies the impact of propeller elasticity. Swept propellers of large diameters or low disc loadings can decrease the thrust significantly. High flight velocities and low material stiffness amplify this tendency. Performance calculations without consideration of propeller elasticity can lead to decreased efficiency. To avoid cost- and time-intense redesigns, propeller elasticity should be considered for swept planforms and low disc loadings. KW - Propeller KW - Finite element method KW - Blade element method KW - Propeller elasticity KW - Aeroelasticity Y1 - 2023 U6 - http://dx.doi.org/10.1007/s13272-023-00649-y SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Felix Möhren VL - 14 SP - 311 EP - 323 PB - Springer Nature CY - Berlin ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Carsten A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - http://dx.doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - About the wing and whirl flutter of a slender wing–propeller system JF - Journal of Aircraft N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing–propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing–propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing–propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis. Y1 - 2024 U6 - http://dx.doi.org/10.2514/1.C037542 SN - 1533-3868 SP - 1 EP - 14 PB - American Institute of Aeronautics and Astronautics ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - A sensitivity study on aeroelastic instabilities of slender wings with a large propeller JF - AIAA SCITECH 2023 Forum N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan. These highly flexible dynamic systems can exhibit uncommon aeroelastic instabilities, which should be carefully investigated to ensure safe operation. The interaction between the propeller and the wing is of particular importance. It is known that whirl flutter is stabilized by wing motion and wing aerodynamics. This paper investigates the effect of a propeller onto wing flutter as a function of span position and mounting stiffness between the propeller and wing. The analysis of a comparison between a tractor and pusher configuration has shown that the coupled system is more stable than the standalone wing for propeller positions near the wing tip for both configurations. The wing fluttermechanism is mostly affected by the mass of the propeller and the resulting change in eigenfrequencies of the wing. For very weak mounting stiffnesses, whirl flutter occurs, which was shown to be stabilized compared to a standalone propeller due to wing motion. On the other hand, the pusher configuration is, as to be expected, the more critical configuration due to the attached mass behind the elastic axis. Y1 - 2023 U6 - http://dx.doi.org/10.2514/6.2023-1893 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online SP - 1 EP - 14 PB - AIAA ER - TY - CHAP A1 - Thoma, Andreas A1 - Stiemer, Luc A1 - Braun, Carsten A1 - Fisher, Alex A1 - Gardi, Alessandro G. T1 - Potential of hybrid neural network local path planner for small UAV in urban environments T2 - AIAA SCITECH 2023 Forum N2 - This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance. Y1 - 2023 U6 - http://dx.doi.org/10.2514/6.2023-2359 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA ER - TY - JOUR A1 - Stiemer, Luc Nicolas A1 - Thoma, Andreas A1 - Braun, Carsten T1 - MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation JF - PLoS ONE N2 - This work presents the Multi-Bees-Tracker (MBT3D) algorithm, a Python framework implementing a deep association tracker for Tracking-By-Detection, to address the challenging task of tracking flight paths of bumblebees in a social group. While tracking algorithms for bumblebees exist, they often come with intensive restrictions, such as the need for sufficient lighting, high contrast between the animal and background, absence of occlusion, significant user input, etc. Tracking flight paths of bumblebees in a social group is challenging. They suddenly adjust movements and change their appearance during different wing beat states while exhibiting significant similarities in their individual appearance. The MBT3D tracker, developed in this research, is an adaptation of an existing ant tracking algorithm for bumblebee tracking. It incorporates an offline trained appearance descriptor along with a Kalman Filter for appearance and motion matching. Different detector architectures for upstream detections (You Only Look Once (YOLOv5), Faster Region Proposal Convolutional Neural Network (Faster R-CNN), and RetinaNet) are investigated in a comparative study to optimize performance. The detection models were trained on a dataset containing 11359 labeled bumblebee images. YOLOv5 reaches an Average Precision of AP = 53, 8%, Faster R-CNN achieves AP = 45, 3% and RetinaNet AP = 38, 4% on the bumblebee validation dataset, which consists of 1323 labeled bumblebee images. The tracker’s appearance model is trained on 144 samples. The tracker (with Faster R-CNN detections) reaches a Multiple Object Tracking Accuracy MOTA = 93, 5% and a Multiple Object Tracking Precision MOTP = 75, 6% on a validation dataset containing 2000 images, competing with state-of-the-art computer vision methods. The framework allows reliable tracking of different bumblebees in the same video stream with rarely occurring identity switches (IDS). MBT3D has much lower IDS than other commonly used algorithms, with one of the lowest false positive rates, competing with state-of-the-art animal tracking algorithms. The developed framework reconstructs the 3-dimensional (3D) flight paths of the bumblebees by triangulation. It also handles and compares two alternative stereo camera pairs if desired. Y1 - 2023 U6 - http://dx.doi.org/10.1371/journal.pone.0291415 SN - 1932-6203 N1 - Corresponding author: Luc Nicolas Stiemer VL - 18 IS - 9 PB - PLOS CY - San Fancisco ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bil, Cees T1 - RANS Simulation Validation of a Small Sensor Turret for UAVs JF - Journal of Aerospace Engineering N2 - Recent Unmanned Aerial Vehicle (UAV) design procedures rely on full aircraft steady-state Reynolds-Averaged-Navier-Stokes (RANS) analyses in early design stages. Small sensor turrets are included in such simulations, even though their aerodynamic properties show highly unsteady behavior. Very little is known about the effects of this approach on the simulation outcomes of small turrets. Therefore, the flow around a model turret at a Reynolds number of 47,400 is simulated with a steady-state RANS approach and compared to experimental data. Lift, drag, and surface pressure show good agreement with the experiment. The RANS model predicts the separation location too far downstream and shows a larger recirculation region aft of the body. Both characteristic arch and horseshoe vortex structures are visualized and qualitatively match the ones found by the experiment. The Reynolds number dependence of the drag coefficient follows the trend of a sphere within a distinct range. The outcomes indicate that a steady-state RANS model of a small sensor turret is able to give results that are useful for UAV engineering purposes but might not be suited for detailed insight into flow properties. Y1 - 2019 U6 - http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0001055 SN - 1943-5525 VL - 32 IS - 5 PB - ASCE CY - New York ER -