TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bil, Cees T1 - RANS Simulation Validation of a Small Sensor Turret for UAVs JF - Journal of Aerospace Engineering N2 - Recent Unmanned Aerial Vehicle (UAV) design procedures rely on full aircraft steady-state Reynolds-Averaged-Navier-Stokes (RANS) analyses in early design stages. Small sensor turrets are included in such simulations, even though their aerodynamic properties show highly unsteady behavior. Very little is known about the effects of this approach on the simulation outcomes of small turrets. Therefore, the flow around a model turret at a Reynolds number of 47,400 is simulated with a steady-state RANS approach and compared to experimental data. Lift, drag, and surface pressure show good agreement with the experiment. The RANS model predicts the separation location too far downstream and shows a larger recirculation region aft of the body. Both characteristic arch and horseshoe vortex structures are visualized and qualitatively match the ones found by the experiment. The Reynolds number dependence of the drag coefficient follows the trend of a sphere within a distinct range. The outcomes indicate that a steady-state RANS model of a small sensor turret is able to give results that are useful for UAV engineering purposes but might not be suited for detailed insight into flow properties. Y1 - 2019 U6 - http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0001055 SN - 1943-5525 VL - 32 IS - 5 PB - ASCE CY - New York ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten T1 - Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems T2 - Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen Y1 - 2018 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft T2 - 67. Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten T1 - Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems T2 - Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 U6 - http://dx.doi.org/10.25967/480227 ER - TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bill, C. T1 - On the flight performance impact of landing gear drag reduction methods for unmanned air vehicles JF - Deutscher Luft- und Raumfahrtkongress 2018 N2 - The flight performance impact of three different landing gear configurations on a small, fixed-wing UAV is analyzed with a combination of RANS CFD calculations and an incremental flight performance algorithm. A standard fixed landing gear configuration is taken as a baseline, while the influence of retracting the landing gear or applying streamlined fairings is investigated. A retraction leads to a significant parasite drag reduction, while also fairings promise large savings. The increase in lift-to-drag ratio is reduced at high lift coefficients due to the influence of induced drag. All configurations are tested on three different design missions with an incremental flight performance algorithm. A trade-off study is performed using the retracted or faired landing gear's weight increase as a variable. The analysis reveals only small mission performance gains as the aerodynamic improvements are negated by weight penalties. A new workflow for decision-making is presented that allows to estimate if a change in landing gear configuration is beneficial for a small UAV. Y1 - 2018 U6 - http://dx.doi.org/10.25967/480058 PB - DGLR CY - Bonn ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Case studies in initial sizing for hybrid-electric general aviation aircraft T2 - 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio Y1 - 2018 U6 - http://dx.doi.org/10.2514/6.2018-5005 ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs JF - CEAS Aeronautical Journal N2 - One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost–benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters. Y1 - 2018 U6 - http://dx.doi.org/10.1007/s13272-018-0352-x SN - 1869-5582 print SN - 1869-5590 online VL - 10 IS - 3 SP - 843 PB - Springer ER - TY - CHAP A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bil, Cees T1 - On the Applicability of Empirical Drag Estimation Methods for Unmanned Air Vehicle Design Read More: https://arc.aiaa.org/doi/10.2514/6.2018-3192 T2 - 2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum Y1 - 2018 U6 - http://dx.doi.org/10.2514/6.2018-3192 SN - 1533-385X N1 - AIAA 2018-3192 SP - Article 3192 ER - TY - CHAP A1 - Schildt, P. A1 - Braun, Carsten A1 - Marcocca, P. T1 - Flight testing the extra 330LE flying testbed T2 - 48th Annual International Symposium of the Society of Flight Test Engineers 2017 Y1 - 2017 SN - 978-151085387-4 N1 - 48th Annual International Symposium of the Society of Flight Test Engineers 2017, SFTE 2017; Destin; United States; 30 October 2017 through 2 November 2017 SP - 349 EP - 362 ER -