TY - JOUR A1 - Zhang, G. A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Chanson, H. T1 - On the estimation of free-surface turbulence using ultrasonic sensors JF - Flow Measurement and Instrumentation N2 - Accurate determination of free-surface dynamics has attracted much research attention during the past decade and has important applications in many environmental and water related areas. In this study, the free-surface dynamics in several turbulent flows commonly found in nature were investigated using a synchronised setup consisting of an ultrasonic sensor and a high-speed video camera. Basic sensor capabilities were examined in dry conditions to allow for a better characterisation of the present sensor model. The ultrasonic sensor was found to adequately reproduce free-surface dynamics up to the second order, especially in two-dimensional scenarios with the most energetic modes in the low frequency range. The sensor frequency response was satisfactory in the sub-20 Hz band, and its signal quality may be further improved by low-pass filtering prior to digitisation. The application of the USS to characterise entrapped air in high-velocity flows is also discussed. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.flowmeasinst.2018.02.009 SN - 0955-5986 VL - 60 SP - 171 EP - 184 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Viti, Nicolo A1 - Valero, Daniel A1 - Gualtieri, Carlo T1 - Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook JF - Water Y1 - 2019 U6 - http://dx.doi.org/10.3390/w11010028 SN - 2073-4441 VL - 11 IS - 1 SP - Art. Nr. 28 ER - TY - CHAP A1 - Valero, Daniel A1 - Vogel, Jochen A1 - Schmidt, Daniel A1 - Bung, Daniel B. T1 - Three-dimensional flow structure inside the cavity of a non-aerated stepped chute T2 - 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May Y1 - 2018 SN - 978-0-692-13277-7 U6 - http://dx.doi.org/10.15142/T3GH17 ER - TY - JOUR A1 - Valero, Daniel A1 - Viti, Nicolo A1 - Gualtieri, Carlo T1 - Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment JF - Water Y1 - 2019 U6 - http://dx.doi.org/10.3390/w11010036 SN - 2073-4441 VL - 11 IS - 1 SP - Art. Nr. 36 PB - MDPI CY - Basel ER - TY - JOUR A1 - Valero, Daniel A1 - Schalko, Isabella A1 - Friedrich, Heide A1 - Abad, Jorge D. A1 - Bung, Daniel B. A1 - Donchyts, Gennadii A1 - Felder, Stefan A1 - Ferreira, Rui M. L. A1 - Hohermuth, Benjamin A1 - Kramer, Matthias A1 - Li, Danxun A1 - Mendes, Luis A1 - Moreno-Rodenas, Antonio A1 - Nones, Michael A1 - Paron, Paolo A1 - Ruiz-Villanueva, Virginia A1 - Wang, Ruo-Qian A1 - Franca, Mario J. T1 - Pathways towards democratization of hydro-environment observations and data JF - Iahr White Paper Series Y1 - 2021 IS - 1 SP - 1 EP - 9 PB - International Association for Hydro-Environment Engineering and Research (IAHR) ER - TY - CHAP A1 - Valero, Daniel A1 - Kramer, Matthias A1 - Bung, Daniel B. A1 - Chanson, Hubert T1 - A stochastic bubble generator for air-water flow research T2 - E-proceedings of the 38th IAHR World Congress, September 1-6, 2019, Panama City, Panama Y1 - 2019 U6 - http://dx.doi.org/10.3850/38WC092019-0909 SP - 5714 EP - 5721 ER - TY - JOUR A1 - Valero, Daniel A1 - Chanson, Hubert A1 - Bung, Daniel B. T1 - Robust estimators for turbulence properties assessment Y1 - 2019 SP - 1 EP - 24 ER - TY - JOUR A1 - Valero, Daniel A1 - Chanson, Hubert A1 - Bung, Daniel B. T1 - Robust estimators for free surface turbulence characterization: A stepped spillway application JF - Flow Measurement and Instrumentation N2 - Robust estimators are parameters insensitive to the presence of outliers. However, they presume the shape of the variables’ probability density function. This study exemplifies the sensitivity of turbulent quantities to the use of classic and robust estimators and the presence of outliers in turbulent flow depth time series. A wide range of turbulence quantities was analysed based upon a stepped spillway case study, using flow depths sampled with Acoustic Displacement Meters as the flow variable of interest. The studied parameters include: the expected free surface level, the expected fluctuation intensity, the depth skewness, the autocorrelation timescales, the vertical velocity fluctuation intensity, the perturbations celerity and the one-dimensional free surface turbulence spectrum. Three levels of filtering were utilised prior to applying classic and robust estimators, showing that comparable robustness can be obtained either using classic estimators together with an intermediate filtering technique or using robust estimators instead, without any filtering technique. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.flowmeasinst.2020.101809 SN - 0955-5986 VL - 76 IS - Art. 101809 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Oertel, M. ED - Dewals, Benjamin T1 - Turbulent dispersion in bounded horizontal jets : RANS capabilities and physical modeling comparison T2 - Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016) Y1 - 2016 SN - 978-1-138-02977-4 SN - 978-1-4987-8149-7 (eBook) U6 - http://dx.doi.org/10.1201/b21902-13 SP - 49 EP - 55 PB - CRC Press ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Erpicum, Sebastien A1 - Peltier, Yann A1 - Dewals, Benjamin T1 - Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling JF - Journal of Hydro-environment Research N2 - Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models). KW - coherent structures KW - hydraulic modelling KW - model performance KW - Proper Orthogonal Decomposition KW - Q-criterion Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.jher.2022.03.002 SN - 1570-6443 IS - In Press PB - Elsevier CY - Amsterdam ER -