TY - JOUR A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Lowis, Carsten A1 - Schöning, Michael Josef T1 - Towards a multi-enzyme capacitive field-effect biosensor by comparative study of drop-coating and nano-spotting technique JF - Sensors N2 - Multi-enzyme immobilization onto a capacitive field-effect biosensor by nano-spotting technique is presented. The nano-spotting technique allows to immobilize different enzymes simultaneously on the sensor surface with high spatial resolution without additional photolithographical patterning. The amount of applied enzymatic cocktail on the sensor surface can be tailored. Capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors with Ta2O5 as pH-sensitive transducer layer have been chosen to immobilize the three different (pL droplets) enzymes penicillinase, urease, and glucose oxidase. Nano-spotting immobilization is compared to conventional drop-coating method by defining different geometrical layouts on the sensor surface (fully, half-, and quarter-spotted). The drop diameter is varying between 84 µm and 102 µm, depending on the number of applied drops (1 to 4) per spot. For multi-analyte detection, penicillinase and urease are simultaneously nano-spotted on the EIS sensor. Sensor characterization was performed by C/V (capacitance/voltage) and ConCap (constant capacitance) measurements. Average penicillin, glucose, and urea sensitivities for the spotted enzymes were 81.7 mV/dec, 40.5 mV/dec, and 68.9 mV/dec, respectively. Y1 - 2020 SN - 1424-8220 U6 - http://dx.doi.org/10.3390/s20174924 N1 - Special issue: Multisensor Systems and Signal Processing in Analytical Chemistry VL - 20 IS - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Molinnus, Denise A1 - Sorich, Maren A1 - Bartz, Alexander A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Lisdat, Fred A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate JF - Sensors and Actuators B: Chemical N2 - An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer’s solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.06.064 SN - 0925-4005 VL - 237 SP - 190 EP - 195 PB - Elsevier CY - Amsterdam ER -