TY - JOUR A1 - Poghossian, Arshak A1 - Jablonski, Melanie A1 - Molinnus, Denise A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers JF - Frontiers in Plant Science N2 - Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases. Y1 - 2020 U6 - http://dx.doi.org/10.3389/fpls.2020.598103 VL - 11 IS - Article 598103 SP - 1 EP - 14 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Molinnus, Denise A1 - Iken, Heiko A1 - Johnen, Anna Lynn A1 - Richstein, Benjamin A1 - Hellmich, Lena A1 - Poghossian, Arshak A1 - Knoch, Joachim A1 - Schöning, Michael Josef T1 - Miniaturized pH-Sensitive Field-Effect Capacitors with Ultrathin Ta₂O₅ Films Prepared by Atomic Layer Deposition JF - physica status solidi (a) applications and materials science N2 - Miniaturized electrolyte–insulator–semiconductor capacitors (EISCAPs) with ultrathin gate insulators have been studied in terms of their pH-sensitive sensor characteristics: three different EISCAP systems consisting of Al–p-Si–Ta2O5(5 nm), Al–p-Si–Si3N4(1 or 2 nm)–Ta2O5 (5 nm), and Al–p-Si–SiO2(3.6 nm)–Ta2O5(5 nm) layer structures are characterized in buffer solution with different pH values by means of capacitance–voltage and constant capacitance method. The SiO2 and Si3N4 gate insulators are deposited by rapid thermal oxidation and rapid thermal nitridation, respectively, whereas the Ta2O5 film is prepared by atomic layer deposition. All EISCAP systems have a clear pH response, favoring the stacked gate insulators SiO2–Ta2O5 when considering the overall sensor characteristics, while the Si3N4(1 nm)–Ta2O5 stack delivers the largest accumulation capacitance (due to the lower equivalent oxide thickness) and a higher steepness in the slope of the capacitance–voltage curve among the studied stacked gate insulator systems. KW - atomic layer deposition KW - capacitive field-effect sensors KW - pH sensors KW - ultrathin gate insulators Y1 - 2022 U6 - http://dx.doi.org/10.1002/pssa.202100660 SN - 1862-6319 VL - 219 IS - 8 PB - Wiley-VCH CY - Weinheim ER -