TY - JOUR A1 - Yang, Peng-Fei A1 - Kriechbaumer, Andreas A1 - Albracht, Kirsten A1 - Sanno, Maximilian A1 - Ganse, Bergita A1 - Koy, Timmo A1 - Shang, Peng A1 - Brüggemann, Gert-Peter A1 - Müller, Lars Peter A1 - Rittweger, Jörn T1 - On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo JF - Journal of Biomechanics Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.jbiomech.2014.12.031 SN - 0021-9290 VL - 48 IS - 3 SP - 456 EP - 464 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Karamanidis, Kiros A1 - Albracht, Kirsten A1 - Braunstein, Bjoern A1 - Catala, Maria Moreno A1 - Goldmann, Jan-Peter A1 - Brüggemann, Gert-Peter T1 - Lower leg musculoskeletal geometry and sprint performance JF - Gait and Posture N2 - The purpose of this study was to investigate whether sprint performance is related to lower leg musculoskeletal geometry within a homogeneous group of highly trained 100-m sprinters. Using a cluster analysis, eighteen male sprinters were divided into two groups based on their personal best (fast: N = 11, 10.30 ± 0.07 s; slow: N = 7, 10.70 ± 0.08 s). Calf muscular fascicle arrangement and Achilles tendon moment arms (calculated by the gradient of tendon excursion versus ankle joint angle) were analyzed for each athlete using ultrasonography. Achilles tendon moment arm, foot and ankle skeletal geometry, fascicle arrangement as well as the ratio of fascicle length to Achilles tendon moment arm showed no significant (p > 0.05) correlation with sprint performance, nor were there any differences in the analyzed musculoskeletal parameters between the fast and slow sprinter group. Our findings provide evidence that differences in sprint ability in world-class athletes are not a result of differences in the geometrical design of the lower leg even when considering both skeletal and muscular components. Y1 - 2011 U6 - http://dx.doi.org/10.1016/j.gaitpost.2011.03.009 SN - 0966-6362 VL - 34 IS - 1 SP - 138 EP - 141 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Albracht, Kirsten A1 - Brüggemann, Gert-Peter A1 - Abel, Dirk T1 - Isokinematic leg extension training with an industrial robot T2 - 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore Y1 - 2016 U6 - http://dx.doi.org/10.1109/BIOROB.2016.7523750 SP - 950 EP - 955 ER - TY - CHAP A1 - Goldmann, Jan-Peter A1 - Braunstein, Bjoern A1 - Heinrich, Kai A1 - Sanno, Maximilian A1 - Stäudle, Benjamin A1 - Ritzdorf, Wolfgang A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Joint work of the take-off leg during elite high jump T2 - Proceedings of the 33th International Conference on Biomechanics in Sports (ISBS) Y1 - 2015 ER - TY - CHAP A1 - Abel, Thomas A1 - Bonin, Dominik A1 - Albracht, Kirsten A1 - Zeller, Sebastian A1 - Brüggemann, Gert-Peter A1 - Burkett, Brendan A1 - Strüder, Heiko K. T1 - Kinematic profile of the elite handcyclist T2 - 28th International Conference on Biomechanics in Sports, Marquette, Michigan, USA, July 19 – 23, 2010 Y1 - 2017 SN - 1999-4168 SP - 140 EP - 141 ER - TY - CHAP A1 - Braunstein, Bjoern A1 - Goldmann, Jan-Peter A1 - Albracht, Kirsten A1 - Sanno, Maximilian A1 - Willwacher, Steffen A1 - Heinrich, Kai A1 - Herrmann, Volker A1 - Brüggemann, Gert-Peter T1 - Joint specific contribution of mechanical power and work during acceleration and top speed in elite sprinters T2 - 31 International Conference on Biomechanics in Sports, Taipei, Taiwan, July 07 - July 22, 2013 Y1 - 2013 SN - 1999-4168 ER - TY - JOUR A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Brüggemann, Gert-Peter A1 - Abel, Dirk A1 - Albracht, Kirsten T1 - Robotergestütztes System für ein verbessertes neuromuskuläres Aufbautraining der Beinstrecker JF - at - Automatisierungstechnik N2 - Neuromuskuläres Aufbautraining der Beinstrecker ist ein wichtiger Bestandteil in der Rehabilitation und Prävention von Muskel-Skelett-Erkrankungen. Effektives Training erfordert hohe Muskelkräfte, die gleichzeitig hohe Belastungen von bereits geschädigten Strukturen bedeuten. Um trainingsinduzierte Schädigungen zu vermeiden, müssen diese Kräfte kontrolliert werden. Mit heutigen Trainingsgeräten können diese Ziele allerdings nicht erreicht werden. Für ein sicheres und effektives Training sollen durch den Einsatz der Robotik, Sensorik, eines Regelkreises sowie Muskel-Skelett-Modellen Belastungen am Zielgewebe direkt berechnet und kontrolliert werden. Auf Basis zweier Vorstudien zu möglichen Stellgrößen wird der Aufbau eines robotischen Systems vorgestellt, das sowohl für Forschungszwecke als auch zur Entwicklung neuartiger Trainingsgeräte verwendet werden kann. Y1 - 2016 U6 - http://dx.doi.org/10.1515/auto-2016-0044 SN - 2196-677X VL - 64 IS - 11 SP - 905 EP - 914 PB - De Gruyter CY - Berlin ER - TY - CHAP A1 - Kolditz, Melanie A1 - Albracht, Kirsten A1 - Fasse, Alessandro A1 - Albin, Thivaharan A1 - Brüggemann, Gert-Peter A1 - Abel, Dirk T1 - Evaluation of an industrial robot as a leg press training device T2 - XV International Symposium on Computer Simulation in Biomechanics July 9th – 11th 2015, Edinburgh, UK Y1 - 2015 SP - 41 EP - 42 ER - TY - CHAP A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Fasse, Alessandro A1 - Brüggemann, Gert-Peter A1 - Abel, Dirk A1 - Albracht, Kirsten T1 - Simulative Analysis of Joint Loading During Leg Press Exercise for Control Applications T2 - IFAC-PapersOnLine Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.ifacol.2015.10.179 N1 - IFAC-PapersOnLine 48-20; Conference Paper Archive VL - 48 IS - 20 SP - 435 EP - 440 ER - TY - JOUR A1 - Yang, Peng-Fei A1 - Kriechbaumer, Andreas A1 - Albracht, Kirsten A1 - Sanno, Maximilian A1 - Ganse, Bergita A1 - Koy, Timmo A1 - Shang, Peng A1 - brüggemann, Gert-Peter A1 - Müller, Lars Peter A1 - Rittweger, Jörn T1 - A novel optical approach for assessing in vivo bone segment deformation and its application in muscle-bone relationship studies in humans JF - Journal of Orthopaedic Translation Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.jot.2014.07.078 SN - 2214-0328 SN - 2214-031X VL - 2 IS - 4 SP - 238 EP - 238 PB - Elsevier CY - Singapore ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking JF - Frontiers in Physiology N2 - Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s–1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task. KW - tendon rupture KW - muscle fascicle behavior KW - walking gait KW - force generation KW - ultrasound imaging Y1 - 2022 U6 - http://dx.doi.org/10.3389/fphys.2022.792576 SN - 1664-042X VL - 13 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Göll, Fabian A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Recovery from achilles tendon repair: a combination of Postsurgery Outcomes and Insufficient remodeling of muscle and tendon JF - Medicine & Science in Sports & Exercise N2 - Achilles tendon rupture (ATR) patients have persistent functional deficits in the triceps surae muscle–tendon unit (MTU). The complex remodeling of the MTU accompanying these deficits remains poorly understood. The purpose of the present study was to associate in vivo and in silico data to investigate the relations between changes inMTU properties and strength deficits inATR patients. Methods: Elevenmale subjects who had undergone surgical repair of complete unilateral ATR were examined 4.6 ± 2.0 (mean ± SD) yr after rupture. Gastrocnemius medialis (GM) tendon stiffness, morphology, and muscle architecture were determined using ultrasonography. The force–length relation of the plantar flexor muscles was assessed at five ankle joint angles. In addition, simulations (OpenSim) of the GM MTU force–length properties were performed with various iterations of MTU properties found between the unaffected and the affected side. Results: The affected side of the patients displayed a longer, larger, and stiffer GM tendon (13% ± 10%, 105% ± 28%, and 54% ± 24%, respectively) compared with the unaffected side. The GM muscle fascicles of the affected side were shorter (32% ± 12%) and with greater pennation angles (31% ± 26%). A mean deficit in plantarflexion moment of 31% ± 10% was measured. Simulations indicate that pairing an intact muscle with a longer tendon shifts the optimal angular range of peak force outside physiological angular ranges, whereas the shorter muscle fascicles and tendon stiffening seen in the affected side decrease this shift, albeit incompletely. Conclusions: These results suggest that the substantial changes in MTU properties found in ATR patients may partly result from compensatory remodeling, although this process appears insufficient to fully restore muscle function. KW - Tendon Rupture KW - Stiffness KW - Simulation KW - Muscle Force KW - Muscle Fascicle Y1 - 2021 U6 - http://dx.doi.org/10.1249/MSS.0000000000002592 SN - 1530-0315 VL - 53 IS - 7 SP - 1356 EP - 1366 PB - American College of Sports Medicine CY - Philadelphia, Pa. ER - TY - JOUR A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Abel, Dirk A1 - Fasse, Alessandro A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Evaluation of foot position and orientation as manipulated variables to control external knee adduction moments in leg extension training JF - Computer methods and programs in biomedicine N2 - Background and Objective Effective leg extension training at a leg press requires high forces, which need to be controlled to avoid training-induced damage. In order to avoid high external knee adduction moments, which are one reason for unphysiological loadings on knee joint structures, both training movements and the whole reaction force vector need to be observed. In this study, the applicability of lateral and medial changes in foot orientation and position as possible manipulated variables to control external knee adduction moments is investigated. As secondary parameters both the medio-lateral position of the center of pressure and the frontal-plane orientation of the reaction force vector are analyzed. Methods Knee adduction moments are estimated using a dynamic model of the musculoskeletal system together with the measured reaction force vector and the motion of the subject by solving the inverse kinematic and dynamic problem. Six different foot conditions with varying positions and orientations of the foot in a static leg press are evaluated and compared to a neutral foot position. Results Both lateral and medial wedges under the foot and medial and lateral shifts of the foot can influence external knee adduction moments in the presented study with six healthy subjects. Different effects are observed with the varying conditions: the pose of the leg is changed and the direction and center of pressure of the reaction force vector is influenced. Each effect results in a different direction or center of pressure of the reaction force vector. Conclusions The results allow the conclusion that foot position and orientation can be used as manipulated variables in a control loop to actively control knee adduction moments in leg extension training. KW - External knee adduction moments KW - Manipulated variables KW - Inverse dynamic problem KW - Inverse kinematic problem KW - Musculoskeletal model Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.cmpb.2016.09.005 SN - 0169-2607 N1 - Part of special issue: "SI: Personalised Models and System Identification" VL - 171 SP - 81 EP - 86 PB - Elsevier CY - Amsterdam ER -