TY - JOUR A1 - Gebhardt, Andreas A1 - Schmidt, Frank-Michael A1 - Hötter, Jan-Steffen A1 - Sokalla, Wolfgang A1 - Sokalla, Patrick T1 - Additive Manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry JF - Physics Procedia Y1 - 2010 SN - 1875-3892 N1 - Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 2 VL - 5 IS - 2 SP - 543 EP - 549 ER - TY - JOUR A1 - Fateri, Miranda A1 - Hötter, Jan-Steffen A1 - Gebhardt, Andreas T1 - Experimental and Theoretical Investigation of Buckling Deformation of Fabricated Objects by Selective Laser Melting JF - Physics Procedia N2 - Although Selective Laser Melting (SLM) process is an innovative manufacturing method, there are challenges such as inferior mechanical properties of fabricated objects. Regarding this, buckling deformation which is caused by thermal stress is one of the undesired mechanical properties which must be alleviated. As buckling deformation is more observable in hard to process materials, silver is selected to be studied theoretically and experimentally for this paper. Different scanning strategies are utilized and a Finite Element Method (FEM) is applied to calculate the temperature gradient in order to determine its effect on the buckling deformation of the objects from experiments. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.phpro.2012.10.062 SN - 1875-3892 N1 - Part of special issue "Laser Assisted Net shape Engineering 7 (LANE 2012)" VL - 39 SP - 464 EP - 470 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hötter, Jan-Steffen A1 - Fateri, Miranda A1 - Gebhardt, Andreas T1 - Selective laser melting of metals: desktop machines open up new chances even for small companies JF - Advanced materials research N2 - Additive manufacturing (AM) of metal parts by using Selective Laser Melting (SLM) has become a powerful tool mostly in the area of automotive, aerospace engineering and others. Especially in the field of dentistry, jewelry and related branches that require individualized or even one-of-a-kind products, the direct digital manufacturing process opens up new ways of design and manufacturing. In these fields, mostly small and medium sized businesses (SME) are operating which do not have sufficient human and economic resources to invest in this technology. But to stay competitive, the application of AM can be regarded as a necessity. In this situation a new desktop machine (Realizer SLM 50) was introduced that cost about 1/3 of a shop floor SLM machine and promises small quality parts. To find out whether the machine really is an alternative for SMEs the University of Applied Science, Aachen, Germany, designed, build and optimized typical parts from the dentistry and the jewelry branches using CoCr and silver material, the latter being new with this application. The paper describes the SLM procedure and how to find and optimize the most important parameters. The test is accompanied by digital simulation in order to verify the build parameters and to plan future builds. The procedure is shown as well as the resulting parts made from CoCr and silver material. Y1 - 2012 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMR.622-623.461 SN - 1662-8985 (E-Journal); 1022-6680 (Print) VL - 622-623 SP - 461 EP - 465 PB - Trans Tech Publ. CY - Baech ER - TY - BOOK A1 - Gebhardt, Andreas A1 - Hötter, Jan-Steffen T1 - Additive manufacturing : 3D printing for prototyping and manufacturing Y1 - 2016 SN - 978-1-56990-582-1 ; 978-1-56990-583-8 PB - Hanser Publishers CY - Munich ER -