TY - CHAP A1 - Dachwald, Bernd A1 - Ulamec, Stephan A1 - Biele, Jens T1 - Clean in situ subsurface exploration of icy environments in the solar system T2 - Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28) N2 - "To assess the habitability of the icy environments in the solar system, for example, on Mars, Europa, and Enceladus, the scientific analysis of material embedded in or underneath their ice layers is very important. We consider self-steering robotic ice melting probes to be the best method to cleanly access these environments, that is, in compliance with planetary protection standards. The required technologies are currently developed and tested." Y1 - 2013 SN - 978-94-007-6545-0 (Druckausgabe) SN - 978-94-007-6546-7 (E-Book) SP - 367 EP - 397 PB - Springer CY - Dordrecht ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ulamec, Stephan A1 - Kowalski, Julia A1 - Boxberg, Marc S. A1 - Baader, Fabian A1 - Biele, Jens A1 - Kömle, Norbert ED - Badescu, Viorel ED - Zacny, Kris ED - Bar-Cohen, Yoseph T1 - Ice melting probes T2 - Handbook of Space Resources N2 - The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests. KW - Ice melting probe KW - Ice penetration KW - Icy moons KW - Ocean worlds KW - Mars Y1 - 2023 SN - 978-3-030-97912-6 (Print) SN - 978-3-030-97913-3 (Online) U6 - http://dx.doi.org/10.1007/978-3-030-97913-3_29 SP - 955 EP - 996 PB - Springer CY - Cham ER -