TY - JOUR A1 - Arreola, Julio A1 - Mätzkow, Malte A1 - Durán, Marlena Palomar A1 - Greeff, Anton A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimization of the immobilization of bacterial spores on glass substrates with organosilanes JF - Physica status solidi (A) : Applications and materials science N2 - Spores can be immobilized on biosensors to function as sensitive recognition elements. However, the immobilization can affect the sensitivity and reproducibility of the sensor signal. In this work, three different immobilization strategies with organosilanes were optimized and characterized to immobilize Bacillus atrophaeus spores on glass substrates. Five different silanization parameters were investigated: nature of the solvent, concentration of the silane, silanization time, curing process, and silanization temperature. The resulting silane layers were resistant to a buffer solution (e.g., Ringer solution) with a polysorbate (e.g., Tween®80) and sonication. KW - silanization KW - organosilanes KW - immobilization KW - endospores KW - biosensors KW - Bacillus atrophaeus Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201532914 SN - 1862-6319 VL - 213 IS - 6 SP - 1463 EP - 1470 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Arreola, Julio A1 - Oberländer, Jan A1 - Mätzkow, M. A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Surface functionalization for spore-based biosensors with organosilanes JF - Electrochimica Acta N2 - In the present work, surface functionalization of different sensor materials was studied. Organosilanes are well known to serve as coupling agent for biomolecules or cells on inorganic materials. 3-aminopropyltriethoxysilane (APTES) was used to attach microbiological spores time to an interdigitated sensor surface. The functionality and physical properties of APTES were studied on isolated sensor materials, namely silicon dioxide (SiO2) and platinum (Pt) as well as the combined material on sensor level. A predominant immobilization of spores could be demonstrated on SiO2 surfaces. Additionally, the impedance signal of APTES-functionalized biosensor chips has been investigated. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.04.157 SN - 0013-4686 VL - 241 SP - 237 EP - 243 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Oberländer, Jan A1 - Arreola, Julio A1 - Hansen, Christina A1 - Greeff, Anton A1 - Mayer, Marlena A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Impedimetric Biosensor to Enable Fast Evaluation of Gaseous Sterilization Processes T2 - MDPI Proceedings Y1 - 2017 U6 - http://dx.doi.org/10.3390/proceedings1040435 N1 - Eurosensors 2017 Conference, Paris, France, 3–6 September 2017 VL - 1 IS - 4 ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Effect of O2 plasma on properties of electrolyte-insulator-semiconductor structures JF - physica status solidi a : applications and materials sciences N2 - Prior to immobilization of biomolecules or cells onto biosensor surfaces, the surface must be physically or chemically activated for further functionalization. Organosilanes are a versatile option as they facilitate the immobilization through their terminal groups and also display self-assembly. Incorporating hydroxyl groups is one of the important methods for primary immobilization. This can be done, for example, with oxygen plasma treatment. However, this treatment can affect the performance of the biosensors and this effect is not quite well understood for surface functionalization. In this work, the effect of O2 plasma treatment on EIS sensors was investigated by means of electrochemical characterizations: capacitance–voltage (C–V) and constant capacitance (ConCap) measurements. After O2 plasma treatment, the potential of the EIS sensor dramatically shifts to a more negative value. This was successfully reset by using an annealing process. KW - surface functionalization KW - O2 plasma KW - hydroxylation KW - electrolyte-insulator semiconductor sensor (EIS) KW - annealing Y1 - 2017 U6 - http://dx.doi.org/10.1002/pssa.201700025 SN - 1862-6319 VL - 214 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Toward an immobilization method for spore-based biosensors in oxidative environment JF - Electrochimica Acta Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.electacta.2019.01.148 VL - 302 SP - 394 EP - 401 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.111628 SN - 0956-5663 VL - 143 IS - 111628 PB - Elsevier CY - Amsterdam ER -