TY - CHAP A1 - Dey, Thomas A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Frauenrath, Tobias A1 - Reke, Michael A1 - Schiffer, Stefan ED - Makedon, Fillia T1 - CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom T2 - PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference N2 - In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway. KW - embedded hardware KW - sensor networks KW - information systems KW - education KW - do-it-yourself Y1 - 2021 SN - 9781450387927 U6 - http://dx.doi.org/10.1145/3453892.3462697 N1 - PETRA '21: The 14th PErvasive Technologies Related to Assistive Environments Conference Corfu Greece 29 June 2021- 2 July 2021 SP - 292 EP - 299 PB - Association for Computing Machinery CY - New York ER - TY - CHAP A1 - Eichenbaum, Julian A1 - Nikolovski, Gjorgji A1 - Mülhens, Leon A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - Towards a lifelong mapping approach using Lanelet 2 for autonomous open-pit mine operations T2 - 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) N2 - Autonomous agents require rich environment models for fulfilling their missions. High-definition maps are a well-established map format which allows for representing semantic information besides the usual geometric information of the environment. These are, for instance, road shapes, road markings, traffic signs or barriers. The geometric resolution of HD maps can be as precise as of centimetre level. In this paper, we report on our approach of using HD maps as a map representation for autonomous load-haul-dump vehicles in open-pit mining operations. As the mine undergoes constant change, we also need to constantly update the map. Therefore, we follow a lifelong mapping approach for updating the HD maps based on camera-based object detection and GPS data. We show our mapping algorithm based on the Lanelet 2 map format and show our integration with the navigation stack of the Robot Operating System. We present experimental results on our lifelong mapping approach from a real open-pit mine. Y1 - 2023 SN - 979-8-3503-2069-5 (Online) SN - 979-8-3503-2070-1 (Print) U6 - http://dx.doi.org/10.1109/CASE56687.2023.10260526 N1 - 19th International Conference on Automation Science and Engineering (CASE), 26-30 August 2023, Auckland, New Zealand. PB - IEEE ER - TY - CHAP A1 - Schulte-Tigges, Joschua A1 - Matheis, Dominik A1 - Reke, Michael A1 - Walter, Thomas A1 - Kaszner, Daniel ED - Krömker, Heidi T1 - Demonstrating a V2X enabled system for transition of control and minimum risk manoeuvre when leaving the operational design domain T2 - HCII 2023: HCI in Mobility, Transport, and Automotive Systems N2 - Modern implementations of driver assistance systems are evolving from a pure driver assistance to a independently acting automation system. Still these systems are not covering the full vehicle usage range, also called operational design domain, which require the human driver as fall-back mechanism. Transition of control and potential minimum risk manoeuvres are currently research topics and will bridge the gap until full autonomous vehicles are available. The authors showed in a demonstration that the transition of control mechanisms can be further improved by usage of communication technology. Receiving the incident type and position information by usage of standardised vehicle to everything (V2X) messages can improve the driver safety and comfort level. The connected and automated vehicle’s software framework can take this information to plan areas where the driver should take back control by initiating a transition of control which can be followed by a minimum risk manoeuvre in case of an unresponsive driver. This transition of control has been implemented in a test vehicle and was presented to the public during the IEEE IV2022 (IEEE Intelligent Vehicle Symposium) in Aachen, Germany. KW - V2X KW - Transiton of Control KW - Minimum Risk Manoeuvre KW - Operational Design Domain KW - Connected Automated Vehicle Y1 - 2023 SN - 978-3-031-35677-3 (Print) SN - 978-3-031-35678-0 (Online) U6 - http://dx.doi.org/10.1007/978-3-031-35678-0_12 N1 - 5th International Conference, MobiTAS 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023. SP - 200 EP - 210 PB - Springer CY - Cham ER -