TY - JOUR A1 - Christiaens, P. A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Bijnens, N. A1 - Williams, O. A. A1 - Daenen, M. A1 - Haenen, K. A1 - Douthéret, O. A1 - Haen, J. d´ A1 - Mekhalif, Z. A1 - Schöning, Michael Josef A1 - Wagner, P. T1 - pH sensitivity of nanocrystalline diamond films JF - Physica status solidi (A). 204 (2007), H. 9 Y1 - 2007 SN - 0031-8965 SP - 2925 EP - 2930 ER - TY - JOUR A1 - Christiaens, P. A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Bijnens, N. A1 - Williams, O. A. A1 - Daenen, M. A1 - Haenen, K. A1 - Schöning, Michael Josef A1 - Wagner, P. T1 - Nanocrystalline diamond-based field-effect capacitive pH sensor JF - Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.) Y1 - 2007 SN - 1-4244-0841-5 N1 - Eurosensors 21, 2007, Lyon ; International Conference on Solid-State Sensors, Actuators and Microsystems 14, 2007, Lyon SP - 1891 EP - 1894 PB - IEEE CY - Piscataway ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, H. A1 - Florke, R. A1 - Wagner, P. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Controlling aseptic sterilization processes by means of a multi-sensor system Y1 - 2011 N1 - 2011 IEEE Workshop on Merging Fields of Computational Intelligence and Sensor Technology ; 11.-15. April 2011 Paris, France SP - 18 EP - 22 PB - IEEE CY - New York ER - TY - JOUR A1 - Dantism, S. A1 - Takenaga, S. A1 - Wagner, P. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells JF - Procedia Engineering N2 - LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.647 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 384 EP - 387 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Wagner, Torsten A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria JF - Sensors N2 - Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process. Y1 - 2019 U6 - http://dx.doi.org/10.3390/s19214692 SN - 1424-8220 VL - 19 IS - 21 PB - MDPI CY - Basel ER -