TY - JOUR A1 - Rausch, Lea A1 - Friesen, John A1 - Altherr, Lena A1 - Meck, Marvin A1 - Pelz, Peter F. T1 - A holistic concept to design optimal water supply infrastructures for informal settlements using remote sensing data JF - Remote Sensing N2 - Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time) and describe how the result of the optimization depends on the entered remote sensing data. KW - water supply design KW - mathematical optimization KW - slum classification KW - remote sensing Y1 - 2018 SN - 2072-4292 U6 - http://dx.doi.org/10.3390/rs10020216 VL - 10 IS - 2 SP - 1 EP - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pfetsch, Marc E. A1 - Pelz, Peter F. T1 - Maschinelles Design eines optimalen Getriebes JF - ATZ - Automobiltechnische Zeitschrift N2 - Nahezu 100.000 denkbare Strukturen kann ein Getriebe bei gleicher Funktion aufweisen - je nach Ganganzahl und gefordertem Freiheitsgrad. Mit dem traditionellen Ansatz bei der Entwicklung, einzelne vielversprechende Systemkonfigurationen manuell zu identifizieren und zu vergleichen, können leicht innovative und vor allem kostenminimale Lösungen übersehen werden. Im Rahmen eines Forschungsprojekts hat die TU Darmstadt spezielle Optimierungsmethoden angewendet, um auch bei großen Lösungsräumen zielsicher ein für die individuellen Zielstellungen optimales Layout zu finden. Y1 - 2018 SN - 2192-8800 U6 - http://dx.doi.org/10.1007/s35148-018-0131-3 VL - 120 IS - 10 SP - 72 EP - 77 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Sun, Hui A1 - Altherr, Lena A1 - Pei, Ji A1 - Pelz, Peter F. A1 - Yuan, Shouqi T1 - Optimal booster station design and operation under uncertain load JF - Applied Mechanics and Materials N2 - Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system’s resilience can be engineered KW - Stochastic Programming KW - Chance Constraint KW - Engineering Application KW - Pump System KW - Water Distribution Y1 - 2018 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.885.102 SN - 1662-7482 VL - 885 SP - 102 EP - 115 PB - Trans Tech Publications CY - Bäch ER - TY - JOUR A1 - Leise, Philipp A1 - Eßer, Arved A1 - Eichenlaub, Tobias A1 - Schleiffer, Jean-Eric A1 - Altherr, Lena A1 - Rinderknecht, Stephan A1 - Pelz, Peter F. T1 - Sustainable system design of electric powertrains - comparison of optimization methods JF - Engineering Optimization N2 - The transition within transportation towards battery electric vehicles can lead to a more sustainable future. To account for the development goal ‘climate action’ stated by the United Nations, it is mandatory, within the conceptual design phase, to derive energy-efficient system designs. One barrier is the uncertainty of the driving behaviour within the usage phase. This uncertainty is often addressed by using a stochastic synthesis process to derive representative driving cycles and by using cycle-based optimization. To deal with this uncertainty, a new approach based on a stochastic optimization program is presented. This leads to an optimization model that is solved with an exact solver. It is compared to a system design approach based on driving cycles and a genetic algorithm solver. Both approaches are applied to find efficient electric powertrains with fixed-speed and multi-speed transmissions. Hence, the similarities, differences and respective advantages of each optimization procedure are discussed. KW - Powertrain KW - stochastic optimization KW - global optimization KW - genetic algorithm Y1 - 2021 U6 - http://dx.doi.org/10.1080/0305215X.2021.1928660 SN - 0305-215X PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Müller, Tim M. A1 - Leise, Philipp A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Optimization and validation of pumping system design and operation for water supply in high-rise buildings JF - Optimization and Engineering N2 - The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps’ characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer’s point of view, keeping in mind the economically important trade-off between investment and operation costs. KW - Technical Operations Research KW - MINLP KW - MILP KW - Experimental validation KW - Pumping systems Y1 - 2020 U6 - http://dx.doi.org/10.1007/s11081-020-09553-4 SN - 1573-2924 VL - 2021 IS - 22 SP - 643 EP - 686 PB - Springer ER - TY - JOUR A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Lorenz, Ulf A1 - Pelz, Peter F. A1 - Pöttgen, Philipp ED - Lübbecke, Marco ED - Koster, Arie ED - Letmathe, Peter ED - Madlener, Reihard ED - Peis, Britta ED - Walther, Grit T1 - Experimental validation of an enhanced system synthesis approach JF - Operations Research Proceedings 2014 N2 - Planning the layout and operation of a technical system is a common task for an engineer. Typically, the workflow is divided into consecutive stages: First, the engineer designs the layout of the system, with the help of his experience or of heuristic methods. Secondly, he finds a control strategy which is often optimized by simulation. This usually results in a good operating of an unquestioned sys- tem topology. In contrast, we apply Operations Research (OR) methods to find a cost-optimal solution for both stages simultaneously via mixed integer program- ming (MILP). Technical Operations Research (TOR) allows one to find a provable global optimal solution within the model formulation. However, the modeling error due to the abstraction of physical reality remains unknown. We address this ubiq- uitous problem of OR methods by comparing our computational results with mea- surements in a test rig. For a practical test case we compute a topology and control strategy via MILP and verify that the objectives are met up to a deviation of 8.7%. Y1 - 2014 SN - 978-3-319-28695-2 U6 - http://dx.doi.org/10.1007/978-3-319-28697-6_1 PB - Springer CY - Basel ER - TY - JOUR A1 - Vergé, Angela A1 - Pöttgen, Philipp A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pelz, Peter F. ED - Greuloch, Ivo ED - Weber, Manfred ED - Meier, Miles T1 - Lebensdauer als Optimierungsziel: Algorithmische Struktursynthese am Beispiel eines hydrostatischen Getriebes JF - O+P – Ölhydraulik und Pneumatik N2 - Verfügbarkeit und Nachhaltigkeit sind wichtige Anforderungen bei der Planung langlebiger technischer Systeme. Meist werden bei Lebensdaueroptimierungen lediglich einzelne Komponenten vordefinierter Systeme untersucht. Ob eine optimale Lebensdauer eine gänzlich andere Systemvariante bedingt, wird nur selten hinterfragt. Technical Operations Research (TOR) erlaubt es, aus Obermengen technischer Systeme automatisiert die lebensdaueroptimale Systemstruktur auszuwählen. Der Artikel zeigt dies am Beispiel eines hydrostatischen Getriebes. Y1 - 2016 SN - 1614-9602 VL - 60 IS - 1-2 SP - 114 EP - 121 PB - Vereinigte Fachverl. CY - Mainz ER - TY - JOUR A1 - Pöttgen, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Developing a control strategy for booster stations under uncertain load JF - Applied Mechanics and Materials N2 - Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy. KW - Technical Operations Research (TOR) KW - Booster Station KW - Pump System KW - Discrete Optimization Y1 - 2015 SN - 1662-7482 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.807.241 N1 - Ebenfalls weltweit einsehbar unter: http://wl.fst.tu-darmstadt.de/wl/publications/paper_151123_SFB805_ ICUME_Developing_a_Control_Strategy_for_Booster_Stations_under_Uncertain_Load_poettgen_ederer_pelz_altherr.pdf VL - 807 IS - 807 SP - 241 EP - 246 PB - Trans Tech Publications CY - Bäch ER - TY - JOUR A1 - Pöttgen, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Lorenz, Ulf A1 - Pelz, Peter F. T1 - Examination and optimization of a heating circuit for energy-efficient buildings JF - Energy Technology N2 - The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortström reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings. KW - energy transfer KW - heating system KW - programming KW - system optimization KW - technical operations research Y1 - 2015 SN - 2194-4296 U6 - http://dx.doi.org/10.1002/ente.201500252 VL - 4 IS - 1 SP - 136 EP - 144 PB - WILEY-VCH Verlag CY - Weinheim ER - TY - JOUR A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pöttgen, Philipp A1 - Lorenz, Ulf A1 - Pelz, Peter F. ED - Pelz, Peter F. ED - Groche, Peter T1 - Multicriterial optimization of technical systems considering multiple load and availability scenarios JF - Applied Mechanics and Materials N2 - Cheap does not imply cost-effective -- this is rule number one of zeitgeisty system design. The initial investment accounts only for a small portion of the lifecycle costs of a technical system. In fluid systems, about ninety percent of the total costs are caused by other factors like power consumption and maintenance. With modern optimization methods, it is already possible to plan an optimal technical system considering multiple objectives. In this paper, we focus on an often neglected contribution to the lifecycle costs: downtime costs due to spontaneous failures. Consequently, availability becomes an issue. KW - sustainability KW - availability KW - energy efficiency KW - mixed-integer linear programming KW - system synthesis Y1 - 2015 SN - 1660-9336 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.807.247 VL - 807 SP - 247 EP - 256 ER -