TY - JOUR A1 - Heinrich, U. A1 - Blum, A. A1 - Bussmann, N. A1 - Engels, R. A1 - Kemmerling, G. A1 - Weber, S. A1 - Ziemons, Karl T1 - Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2×2×10 mm3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO4) and exposed to a 22Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551±35% by mechanical polishing the surface compared to 100±5% for raw crystals. Etching the surface increased the light output to 441±29%. The untreated crystals had an energy resolution of 24.6±4.0%. By mechanical polishing the surface it was possible to achieve an energy resolution of 13.2±0.8%, by etching of 14.8±0.7%. In combination with BaSO4 as reflector material the maximum increase of light output has been established to 932±57% for mechanically polished and 895±61% for etched crystals. The combination with BaSO4 also caused the best improvement of the energy resolution up to 11.6±0.2% for mechanically polished and 12.2±0.3% for etched crystals. Relating to the light output there was no significant statistical difference between the two surface treatments in combination with BaSO4. In contrast to this, the statistical results of the energy resolution have shown the combination of mechanical polishing and BaSO4 as the optimum. Y1 - 2002 SN - 0168-9002 N1 - Proceedings of the 6th International Conference on Inorganic Scin tillators and their Use in Scientific and Industrial Applications VL - 486 IS - 1-2 SP - 60 EP - 66 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Chatziioannou, A. F. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. A1 - Pietrzyk, U. T1 - Investigation of different MicroCT scanner configurations by GEANT4 simulations JF - IEEE Transactions on Nuclear Science N2 - This study has been performed to design the combination of the new ClearPET (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal positron emission tomography (PET) system, with a micro-computed tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We will demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material. Y1 - 2005 SN - 0018-9499 VL - 52 IS - 1 SP - 188 EP - 192 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Weber, S. A1 - Streun, M. A1 - Parl, C. A1 - Ziemons, Karl T1 - High resolution imaging with ClearPET™ Neuro - first animal images JF - 2005 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - The ClearPET™ Neuro is the first full ring scanner within the Crystal Clear Collaboration (CCC). It consists of 80 detector modules allocated to 20 cassettes. LSO and LuYAP:Ce crystals in phoswich configuration in combination with position sensitive photomultiplier tubes are used to achieve high sensitivity and realize the acquisition of the depth of interaction (DOI) information. The complete system has been tested concerning the mechanical and electronical stability and interplay. Moreover, suitable corrections have been implemented into the reconstruction procedure to ensure high image quality. We present first results which show the successful operation of the ClearPET™ Neuro for artefact free and high resolution small animal imaging. Based on these results during the past few months the ClearPET™ Neuro System has been modified in order to optimize the performance. Y1 - 2006 SN - 1082-3654 SP - 1641 EP - 1644 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Chaziioannou, A. F. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. A1 - Pietrzyk, U. T1 - Investigation of different microCT scanner configurations by GEANT4 simulations JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4 N2 - This study has been performed to design the combination of the new ClearPET TM (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal Positron Emission Tomography (PET) system, with a microComputed Tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material. Y1 - 2004 SN - 1082-3654 SP - 2989 EP - 2993 ER - TY - JOUR A1 - Christ, D. A1 - Hollendung, A. A1 - Larue, H. A1 - Parl, C. A1 - Streun, M. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. T1 - Homogenization of the MultiChannel PM gain by inserting light attenuating masks JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4 N2 - MultiChannel Photomultipliers (PM), like the R7600-00-M64 or R5900-00-M64 from Hamamatsu, are often chosen as photodetectors in high-resolution positron emission tomography (PET). A major problem of this PM is the nonuniform channel gain. In order to solve this problem, light attenuating masks were created. The aim of the masks is a homogenization of the output of all 64 channels using different hole sizes at the channel positions. The hole area, which is individually defined for the different channels, is inversely proportional to the channel gain. The measurements by inserting light attenuating masks improved a homogenization to a ratio of 1:1.2. Y1 - 2004 SN - 1082-3654 SP - 2382 EP - 2385 ER - TY - CHAP A1 - Terstegge, Andreas A1 - Weber, S. A1 - Herzog, H. A1 - Müller-Gärtner, H. W. A1 - Halling, H. T1 - Design and implementation aspects of a 3D reconstruction algorithm for the Jülich TierPET system T2 - 1997 International Meeting on Fully ThreeDimensional Image Reconstruction in Radiology and Nuclear Medicine : 3D97 Y1 - 1997 SP - 170 EP - 173 ER - TY - CHAP A1 - Weber, S. A1 - Terstegge, Andreas A1 - Engels, R. A1 - Herzog, H. A1 - Reinartz, R. A1 - Reinhart, P. A1 - Rongen, F. A1 - Müller-Gärtner, H. W. A1 - Halling, H. T1 - The KFA TierPET: performance characteristics and measurements T2 - Conference record / 1996 IEEE Nuclear Science Symposium [and Medical Imaging], November 2 - 9, 1996, Anaheim, California ; vol. 2 Y1 - 1996 SN - 0-7803-3534-1 SN - 1082-3654 SP - 1117 EP - 1119 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Weber, S. A1 - Terstegge, Andreas A1 - Halling, H. A1 - Herzog, H. A1 - Reinartz, R. A1 - Reinhart, P. A1 - Rongen, F. A1 - Müller-Gärtner, H.-W. T1 - The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity T2 - Conference record / 1995 IEEE Nuclear Science Symposium and Medical Imaging, October 21 - 28, 1995, San Francisco ; vol. 2 Y1 - 1995 SN - 078033180X ; 0780331818 ; 0780331826 SP - 1002 EP - 1005 PB - IEEE CY - Piscataway, NJ ER -