TY - JOUR A1 - Alexopoulos, Spiros A1 - Breitbach, Gerd A1 - Hoffschmidt, Bernhard A1 - Stobbe, P. T1 - Computational fluid flow of porous resic ceramic filtering modules and optimization of the channel edge form geometry JF - Proceedings : April 14 - 18, 2008, Leipzig, Germany / hosted by VDI, Society for Chemical and Process Engineering . Vol 2 Y1 - 2008 N1 - Verein Deutscher Ingenieure ; World Filtration Congress ; (10 : ; 2008.04.14-18 : ; Leipzig) ; WFC ; (10 : ; 2008.04.14-18 : ; Leipzig) SP - 300 EP - 304 PB - Filtech Exhibitions CY - Meerbusch ER - TY - JOUR A1 - Alexopoulos, Spiros A1 - Breitbach, Gerd A1 - Hoffschmidt, Bernhard A1 - Stobbe, P. T1 - Optimization of the geometry of porous SiC ceramic filtering modules using numerical methods JF - Developments in porous, biological and geopolymer ceramics : a collection of papers presented at the 31st International Conference on Advanced Ceramics and Composites, January 21 - 26, 2007, Daytona Beach, Florida ; [papers presented at the Symposium on Porous Ceramics: Novel Developments and Applications] / ed.: Manuel Brito ... Vol. ed.: Jonathan Salem ... The American Ceramics Society Y1 - 2008 SN - 9780470196403 N1 - Ceramic engineering and science proceedings ; 28,9 SP - 95 EP - 104 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard T1 - Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus JF - Renewable Energy . 35 (2010), H. 7 Y1 - 2010 SN - 0960-1481 SP - 1352 EP - 1356 ER - TY - JOUR A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard T1 - Solarthermische Kraftwerke mit thermischen Speichern JF - Chemie Ingenieur Technik. 82 (2010), H. 9 Y1 - 2010 SN - 1522-2640 N1 - Special Issue: ProcessNet-Jahrestagung 2010 und 28. Jahrestagung der Biotechnologen V9.01 [Abstract des Vortrags] SP - 1606 EP - 1606 ER - TY - JOUR A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard T1 - Advances in solar tower technology JF - Wiley interdisciplinary reviews : Energy and Environment : WIREs Y1 - 2017 U6 - http://dx.doi.org/10.1002/wene.217 SN - 2041-840X VL - 6 IS - 1 SP - 1 EP - 19 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Caminos, R.A. Chico A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating Solar Power T2 - Earth systems and environmental sciences N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Concentrating solar power KW - Fresnel power plant KW - Gas turbine Y1 - 2021 SN - 978-0-12-409548-9 U6 - http://dx.doi.org/10.1016/B978-0-12-819727-1.00089-3 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Göttsche, Joachim A1 - Sauerborn, Markus A1 - Kaufhold, O. T1 - High Concentration Solar Collectors T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail. KW - Central receiver system KW - Concentrated solar collector KW - Solar dish KW - Solar concentration Y1 - 2022 SN - 978-0-12-819734-9 U6 - http://dx.doi.org/10.1016/B978-0-12-819727-1.00058-3 SP - 198 EP - 245 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Chico Caminos, R.A. A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating solar power T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Gas turbine KW - Hybridization KW - Power conversion systems Y1 - 2022 SN - 978-0-12-819734-9 SP - 670 EP - 724 PB - Elsevier CY - Amsterdam ER -