TY - JOUR A1 - Reisert, Steffen A1 - Schneider, Benno A1 - Geissler, Hanno A1 - Gompel, Matthias van A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range JF - physica status solidi (a) N2 - In this work, a multi-sensor chip for the investigation of the sensing properties of different types of metal oxides towards hydrogen peroxide in the ppm range is presented. The fabrication process and physical characterization of the multi-sensor chip are described. Pure SnO2 and WO3 as well as Pd- and Pt-doped SnO2 films are characterized in terms of their sensitivity to H2O2. The sensing films have been prepared by drop-coating of water-dispensed nano-powders. A physical characterization, including scanning electron microscopy and X-ray diffraction analysis of the deposited metal-oxide films, was done. From the measurements in hydrogen peroxide atmosphere, it could be shown, that all of the tested metal oxide films are suitable for the detection of H2O2 in the ppm range. The highest sensitivity and reproducibility was achieved using Pt-doped SnO2. Calibration plot of a SnO2, WO3, Pt-, and Pd-doped SnO2 gas sensor for H2O2 concentrations in the ppm range. Y1 - 2013 SN - 1862-6319 VL - 210 IS - 5 SP - 898 EP - 904 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Reisert, Steffen A1 - Henkel, Hartmut A1 - Schneider, Andreas A1 - Schäfer, Daniel A1 - Friedrich, Peter A1 - Berger, Jörg A1 - Schöning, Michael Josef T1 - Development of a handheld sensor system for the online measurement of hydrogen peroxide in aseptic filling systems JF - Physica Status Solidi (A). 207 (2010), H. 4 Y1 - 2010 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 SP - 913 EP - 918 ER - TY - JOUR A1 - Reisert, Steffen A1 - Henkel, H. A1 - Schneider, A. A1 - Schäfer, D. A1 - Friedrich, P. A1 - Berger, J. A1 - Schöning, Michael Josef T1 - Entwicklung eines Handheld-Sensorsystems für die „On-line“-Messung der H2O2-Konzentration in aseptischen Entkeimungsprozessen JF - 9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.] Y1 - 2009 SN - 978-3-941298-44-6 N1 - Dresdner Sensor-Symposium ; (9, 2009, Dresden) SP - 285 EP - 288 PB - TUDpress CY - Dresden ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, Hanno A1 - Flörke, Rudolf A1 - Weiler, Christian A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Characterisation of aseptic sterilisation processes using an electronic nose JF - International journal of nanotechnology Y1 - 2013 SN - 1475-7435 (Print) 7141-8151 (Online) VL - Vol. 10 IS - No. 5-7 SP - 470 EP - 484 PB - Inderscience Enterprises CY - Genève ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, Hanno A1 - Flörke, Rudolf A1 - Näther, Niko A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2) JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1351 EP - 1356 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, H. A1 - Weiler, C. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes JF - Food control N2 - The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.foodcont.2014.07.063 SN - 1873-7129 (E-Journal); 0956-7135 (Print) VL - 47 SP - 615 EP - 622 ER - TY - CHAP A1 - Reisert, Steffen A1 - Geissler, H. A1 - Flörke, R. A1 - Weiler, C. A1 - Wagner, P. A1 - Schöning, Michael Josef ED - Abdelghani, Adnane ED - Schöning, Michael Josef T1 - Characterisation of aseptic sterilisation processes using an electronic nose T2 - Nanoscale Science and Technology (NS&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012 Y1 - 2012 SP - 45 EP - 45 ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, H. A1 - Florke, R. A1 - Wagner, P. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Controlling aseptic sterilization processes by means of a multi-sensor system Y1 - 2011 N1 - 2011 IEEE Workshop on Merging Fields of Computational Intelligence and Sensor Technology ; 11.-15. April 2011 Paris, France SP - 18 EP - 22 PB - IEEE CY - New York ER - TY - CHAP A1 - Oberländer, Jan A1 - Reisert, Steffen A1 - Kirchner, Patrick A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Kalorimetrische Gassensoren zur H2O2-Detektion in aseptischen Sterilisationsprozessen T2 - 11. Dresdner Sensor-Symposium : 9.-11.12.2013 Y1 - 2013 SN - 978-3-9813484-5-3 SP - 234 EP - 238 ER - TY - CHAP A1 - Kirchner, Patrick A1 - Reisert, Steffen A1 - Schöning, Michael Josef T1 - Calorimetric gas sensors for hydrogen peroxide monitoring in aseptic food processes T2 - Gas sensing fundamentals. (Springer Series on Chemical Sensors and Biosensors ; 15) N2 - For the sterilisation of aseptic food packages it is taken advantage of the microbicidal properties of hydrogen peroxide (H2O2). Especially, when applied in vapour phase, it has shown high potential of microbial inactivation. In addition, it offers a high environmental compatibility compared to other chemical sterilisation agents, as it decomposes into oxygen and water, respectively. Due to a lack in sensory detection possibilities, a continuous monitoring of the H2O2 concentration was recently not available. Instead, the sterilisation efficacy is validated using microbiological tests. However, progresses in the development of calorimetric gas sensors during the last 7 years have made it possible to monitor the H2O2 concentration during operation. This chapter deals with the fundamentals of calorimetric gas sensing with special focus on the detection of gaseous hydrogen peroxide. A sensor principle based on a calorimetric differential set-up is described. Special emphasis is given to the sensor design with respect to the operational requirements under field conditions. The state-of-the-art regarding a sensor set-up for the on-line monitoring and secondly, a miniaturised sensor for in-line monitoring are summarised. Furthermore, alternative detection methods and a novel multi-sensor system for the characterisation of aseptic sterilisation processes are described. KW - Calorimetric gas sensor KW - Hydrogen peroxide KW - Multi-sensor system Y1 - 2014 SN - 978-3-642-54518-4 (Print) ; 978-3-642-54519-1 (Online) U6 - http://dx.doi.org/10.1007/5346_2013_51 SP - 279 EP - 309 PB - Springer CY - Heidelberg ER -