TY - JOUR A1 - Ngamga, Eulalie Joelle A1 - Bialonski, Stephan A1 - Marwan, Norbert A1 - Kurths, Jürgen A1 - Geier, Christian A1 - Lehnertz, Klaus T1 - Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data JF - Physics Letters A N2 - We investigate the suitability of selected measures of complexity based on recurrence quantification analysis and recurrence networks for an identification of pre-seizure states in multi-day, multi-channel, invasive electroencephalographic recordings from five epilepsy patients. We employ several statistical techniques to avoid spurious findings due to various influencing factors and due to multiple comparisons and observe precursory structures in three patients. Our findings indicate a high congruence among measures in identifying seizure precursors and emphasize the current notion of seizure generation in large-scale epileptic networks. A final judgment of the suitability for field studies, however, requires evaluation on a larger database. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.physleta.2016.02.024 SN - 0375-9601 VL - 380 IS - 16 SP - 1419 EP - 1425 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Geier, Christian A1 - Lehnertz, Klaus A1 - Bialonski, Stephan T1 - Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing JF - Frontiers in Human Neuroscience Y1 - 2015 U6 - http://dx.doi.org/10.3389/fnhum.2015.00462 SN - 1662-5161 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Geier, Christian A1 - Bialonski, Stephan A1 - Elger, Christian E. A1 - Lehnertz, Klaus T1 - How important is the seizure onset zone for seizure dynamics? JF - Seizure Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.seizure.2014.10.013 SN - 1059-1311 VL - 25 SP - 160 EP - 166 ER - TY - JOUR A1 - Lehnertz, Klaus A1 - Ansmann, Gerrit A1 - Bialonski, Stephan A1 - Dickten, Henning A1 - Geier, Christian A1 - Porz, Stephan T1 - Evolving networks in the human epileptic brain JF - Physica D: Nonlinear Phenomena N2 - Network theory provides novel concepts that promise an improved characterization of interacting dynamical systems. Within this framework, evolving networks can be considered as being composed of nodes, representing systems, and of time-varying edges, representing interactions between these systems. This approach is highly attractive to further our understanding of the physiological and pathophysiological dynamics in human brain networks. Indeed, there is growing evidence that the epileptic process can be regarded as a large-scale network phenomenon. We here review methodologies for inferring networks from empirical time series and for a characterization of these evolving networks. We summarize recent findings derived from studies that investigate human epileptic brain networks evolving on timescales ranging from few seconds to weeks. We point to possible pitfalls and open issues, and discuss future perspectives. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.physd.2013.06.009 SN - 0167-2789 VL - 267 SP - 7 EP - 15 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bialonski, Stephan A1 - Lehnertz, Klaus T1 - Assortative mixing in functional brain networks during epileptic seizures JF - Chaos: An Interdisciplinary Journal of Nonlinear Science Y1 - 2013 U6 - http://dx.doi.org/10.1063/1.4821915 VL - 23 IS - 3 SP - 033139 ER - TY - JOUR A1 - Bialonski, Stephan A1 - Wellmer, Jörg A1 - Elger, Christian E. A1 - Lehnertz, Klaus T1 - Interictal focus localization in neocortical lesional epilepsies with synchronization cluster analysis JF - Epilepsia Y1 - 2006 SN - 0013-9580 VL - 47 SP - 36 ER - TY - JOUR A1 - Lehnertz, Klaus A1 - Bialonski, Stephan A1 - Horstmann, Marie-Therese A1 - Krug, Dieter A1 - Rothkegel, Alexander A1 - Staniek, Matthäus A1 - Wagner, Tobias T1 - Synchronization phenomena in human epileptic brain networks JF - Journal of neuroscience methods Y1 - 2009 U6 - http://dx.doi.org/10.1016/j.jneumeth.2009.05.015 SN - 0165-0270 VL - 183 IS - 1 SP - 42 EP - 48 ER - TY - JOUR A1 - Schindler, Kaspar A. A1 - Bialonski, Stephan A1 - Horstmann, Marie-Therese A1 - Elger, Christian E. A1 - Lehnertz, Klaus T1 - Evolving functional network properties and synchronizability during human epileptic seizures JF - Chaos: An Interdisciplinary Journal of Nonlinear Science Y1 - 2008 U6 - http://dx.doi.org/10.1063/1.2966112 SN - 1089-7682 VL - 18 IS - 3 SP - 033119 ER - TY - JOUR A1 - Bialonski, Stephan A1 - Schindler, K. A1 - Elger, C. E. A1 - Lehnertz, Klaus T1 - Lateralized characteristics of the evolution of EEG correlation during focal onset seizures: a mechanism to prevent secondary generalization? JF - Epilepsia N2 - Rationale: Previous studies [Topolnik et al., Cereb Cortex 2003; 13: 883; Schindler et al., Brain 2007; 130: 65] indicate that the termination of focal onset seizures may be causally related to an increase of global neuronal correlation during the second half of the seizures. This increase was observed to occur earlier in complex partial seizures than in secondarily generalized seizures. We here address the question whether such an increase of neuronal correlation prior to seizure end is indeed a global phenomenon, involving both hemispheres or whether there are side-specific differences. Methods: We analyzed 20 focal onset seizures (10 complex partial, 10 secondarily generalized seizures) recorded in 13 patients who underwent presurgical evaluation of focal epilepsies of different origin. EEG was recorded intracranially from bilaterally implanted subdural strip and intrahippocampal depth electrodes. Utilizing a moving window approach, we investigated the evolution of the maximum cross correlation for all channel combinations during seizures. For each moving window the mean value of the maximum cross correlation (MCC) between all electrode contacts was computed separately for each hemisphere. After normalization of seizure durations, MCC values of the ipsi- and contralateral hemisphere for all seizures were determined. Results: We observed that the MCC of the contralateral hemisphere in complex partial seizures increased during the first half of the seizure, whereas, for the same time interval, the MCC of the ipsilateral hemisphere even declined below the level of the pre-seizure period. In contrast, no significant differences between both hemispheres could be observed for secondarily generalized seizures where both hemispheres showed a simultaneous increase of MCC during the second half of the seizures. The level of MCC for the contralateral hemisphere was higher for complex partial seizures than for secondarily generalized seizures during the first half of the seizure. Conclusions: Our findings indicate that there are indeed lateralized differences in the evolution of global neuronal correlation during complex partial and secondarily generalized seizures. The observed contralateral increase of neuronal correlation during complex partial seizures might indicate an emerging self-organizing mechanism for preventing the spread of seizure activity. Y1 - 2008 SN - 0013-9580 VL - 49 SP - 11 EP - 11 ER - TY - JOUR A1 - Lehnertz, Klaus A1 - Mormann, Florian A1 - Osterhage, Hannes A1 - Andy, Müller A1 - Prusseit, Jens A1 - Chernihovskyi, Anton A1 - Staniek, Matthäus A1 - Krug, Dieter A1 - Bialonski, Stephan A1 - Elger, Christian E. T1 - State-of-the-art of seizure prediction JF - Journal of Clinical Neurophysiology Y1 - 2007 U6 - http://dx.doi.org/10.1097/WNP.0b013e3180336f16 SN - 1537-1603 VL - 24 IS - 2 SP - 147 EP - 153 ER -