TY - CHAP A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Demirci, Taylan A1 - Gierkowski, Jessica R. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract] N2 - In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension. KW - Endothelzelle KW - Sepsis KW - kontraktile Spannung KW - rhAPC KW - contractile tension KW - rhAPC KW - celldrum technology Y1 - 2010 ER - TY - CHAP A1 - Digel, Ilya A1 - Demirci, Taylan A1 - Trzewik, Jürgen A1 - Linder, Peter A1 - Temiz Artmann, Aysegül T1 - Fibroblast response to mechanical stress: role of the adhesion substrate : [abstract] N2 - Mechanical stimulation of the cells resulted in evident changes in the cell morphology, protein composition and gene expression. Microscopically, additional formation of stress fibers accompanied by cell re-arrangements in a monolayer was observed. Also, significant activation of p53 gene was revealed as compared to control. Interestingly, the use of CellTech membrane coating induced cell death after mechanical stress had been applied. Such an effect was not detected when fibronectin had been used as an adhesion substrate. KW - Fibroblast KW - Mechanische Beanspruchung KW - celldrum technology Y1 - 2004 ER - TY - JOUR A1 - Demirci, Taylan A1 - Kurulgan Demirci, Eylem A1 - Trzewik, Jürgen A1 - Linder, Peter A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Sakizli, Meral A1 - Temiz Artmann, Aysegül T1 - Gene expression profile analysis of 3T3/NIH fibroblasts after one hour mechanical stress JF - IUBMB Life. 61 (2009), H. 3 Y1 - 2009 SN - 1521-6543 N1 - Abstracts: Turkish Society of Molecular Medicine, Third International Congress of Molecular Medicine, May 5-8, 2009, Istanbul, Turkey SP - 311 EP - 312 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, Taylan A1 - Linder, Peter A1 - Trzewik, Jürgen A1 - Gierkowski, Jessica Ricarda A1 - Gossmann, Matthias A1 - Kayser, Peter A1 - Porst, Dariusz A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells JF - Journal of Bioscience and Bioengineering N2 - All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models. KW - Cell permeability KW - Cellular force KW - Endothelial cells KW - Recombinant activated protein C KW - Lipopolysaccharide KW - Contractile tension KW - CellDrum Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.jbiosc.2012.03.019 SN - 1347-4421 VL - 113 IS - 2 SP - 212 EP - 219 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Digel, Ilya A1 - Trzewik, Jürgen A1 - Demirci, Taylan A1 - Temiz Artmann, Aysegül T1 - Response of fibroblasts to cyclic mechanical stress : a proteome approach / Digel, I. ; Trzewik, J. ; Demirci, T. ; Temiz Artmann, A. ; Artmann, G. M. JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1042 EP - 1043 ER - TY - JOUR A1 - Digel, Ilya A1 - Demirci, Taylan A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. T1 - Free Radical Nature of the Bactericidal Effect of Plasma-Generated Cluster Ions (PCIs) JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 982 EP - 983 ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Demirci, Taylan A1 - Trzewik, Jürgen A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Contractile tension of endothelial cells: An LPS based in-vitro sepsis model JF - IUBMB Life. 61 (2009), H. 3 Y1 - 2009 SN - 1521-6543 N1 - Abstracts: Turkish Society of Molecular Medicine, Third International Congress of Molecular Medicine, May 5-8, 2009, Istanbul, Turkey SP - 307 EP - 308 PB - Wiley CY - Weinheim ER -