TY - JOUR A1 - Wagner, Torsten A1 - Beging, Stefan A1 - Rotter, L. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Zang, Werner A1 - Schöning, Michael Josef T1 - Online-Messsysteme für die automatisierte Charakterisierung von feldeffektbasierten Biosensoren JF - 8. Dresdner Sensor-Symposium : Sensoren für Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme für die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung für die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.) Y1 - 2007 SN - 978-3-940046-45-1 N1 - Dresdner Sensor-Symposium <8, 2007, Dresden> ; Dresdner Beiträge zur Sensorik ; 29 SP - 257 EP - 260 PB - TUDpress, Verl. der Wissenschaften CY - Dresden ER - TY - JOUR A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Otto, R. A1 - Yoshinobu, T. T1 - A handheld 16 channel pen-type LAPS as a platform for (bio-)electrochemical sensing JF - Biomedizinische Technik. 49 (2004), H. 2 Y1 - 2004 SN - 0932-4666 SP - 996 EP - 997 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Wang, C. A1 - Otto, R. A1 - Yoshinobu, T. T1 - Development of a handheld 16 channel pen-type LAPS for electrochemical sensing JF - Sensors and Actuators B. 108 (2005) Y1 - 2005 SN - 0925-4005 SP - 808 EP - 814 ER - TY - JOUR A1 - Wagner, Torsten A1 - Rao, C. A1 - Otto, R. A1 - Yoshinobu, T. A1 - Kloock, Joachim P. A1 - Schöning, Michael Josef T1 - Chipkarten-basierter Multikanal lichtadressierbarer potentiometrischer Sensor für analytische Anwendungen in flüssigen Medien JF - Neue Herausforderungen und Anwendungen in der Sensortechnik : 7. Dresdner Sensor-Symposium ; 12. - 14. Dezember 2005, Dresden / [Forschungsgesellschaft für Messtechnik, Sensorik und Medizintechnik e.V.]. Gerald Gerlach ... (Hg.) Y1 - 2005 SN - 3-938863-29-3 N1 - Dresdner Beiträge zur Sensorik ; 24 SP - 11 EP - 14 PB - TUDpress CY - Dresden ER - TY - JOUR A1 - Wagner, Torsten A1 - Yoshinobu, T. A1 - Rao, C. A1 - Otto, R. A1 - Schöning, Michael Josef T1 - „All-in-one“ solid-state device based on a lightaddressable potentiometric sensor platform JF - Transducers '05 : the 13th International Conference on Solid-State Sensors, Actuators and Microsystems ; Seoul, Korea, [June 5 - 9, 2005] ; digest of technical papers / sponsored by Korean Sensors Society. Technical co-sponsors: IEEE Electron Devices Society Y1 - 2005 SN - 0-7803-83995-6 N1 - International Conference on Solid State Sensors, Actuators and Microsystems ; (13, 2005, Seoul) SP - 1872 EP - 1875 PB - IEEE Operations Center CY - Piscataway, NJ ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Wang, C. A1 - Otto, R. A1 - Yoshinobu, T. T1 - Development of a handheld 16 channel pen-type LAPS for electrochemical sensing JF - Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors Y1 - 2004 N1 - Chemical sensors ; 20.2004 Suppl. B. IMCS ; (10, 2004, Tsukuba) ; International Meeting on Chemical Sensors ; (10 : ; 2004.07.11-14 : ; Tsukuba) SP - 136 EP - 137 PB - Japan Association of Chemical Sensors CY - Fukuoka ER - TY - JOUR A1 - Yoshinobu, T. A1 - Iwasaki, H. A1 - Ui, Y. A1 - Furuichi, K. A1 - Ermelenko, Y. A1 - Mourzina, Y. A1 - Wagner, Torsten A1 - Näther, Niko A1 - Schöning, Michael Josef T1 - The light-addressable potentiometric sensor for multi-ion sensing and imaging JF - Methods. 37 (2005), H. 1 Y1 - 2005 SN - 1046-2023 SP - 99 EP - 102 ER - TY - JOUR A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Miyamoto, Ko-ichiro A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up JF - Sensors and Actuators B: Chemical N2 - Light-addressable potentiometric sensors (LAPS) are field-effect-based sensors. A modulated light source is used to define the particular measurement spot to perform spatially resolved measurements of chemical species and to generate chemical images. In this work, an organic-LED (OLED) display has been chosen as a light source. This allows high measurement resolution and miniaturisation of the system. A new developed driving method for the OLED display optimised for LAPS-based measurements is demonstrated. The new method enables to define modulation frequencies between 1 kHz and 16 kHz and hence, reduces the measurement time of a chemical image by a factor of 40 compared to the traditional addressing of an OLED display. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2011.12.102 SN - 0925-4005 N1 - Part of special issue "Selected Papers presented at Eurosensors XXV" VL - 175 SP - 118 EP - 122 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kloock, Joachim P. A1 - Moreno, Lia A1 - Bratov, A. A1 - Huachupoma, S. A1 - Xu, J. A1 - Wagner, Torsten A1 - Yoshinobu, T. A1 - Ermolenko, Y. A1 - Vlasov, Y. G. A1 - Schöning, Michael Josef T1 - PLD-prepared cadmium sensors based on chalcogenide glasses —ISFET, LAPS and μISE semiconductor structures JF - Sensors and Actuators B: Chemical. 118 (2006), H. 1-2 Y1 - 2006 SN - 0925-4005 N1 - Eurosensors XIX - Eurosensors XIX - The 19th European Conference on Solid-State Transducers SP - 149 EP - 155 ER - TY - JOUR A1 - Wagner, Torsten A1 - Rao, C. A1 - Kloock, Joachim P. A1 - Yoshinobu, T. A1 - Otto, R. A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - “LAPS Card”—A novel chip card-based light-addressable potentiometric sensor (LAPS) JF - Sensors and Actuators B: Chemical. 118 (2006), H. 1-2 Y1 - 2006 SN - 0925-4005 N1 - Eurosensors XIX - Eurosensors XIX - The 19th European Conference on Solid-State Transducers SP - 33 EP - 40 ER - TY - JOUR A1 - Wagner, Torsten A1 - Molina, Roberto A1 - Yoshinobu, Tatsuo A1 - Kloock, Joachim P. A1 - Biselli, Manfred A1 - Canzoneri, Michele A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef T1 - Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications JF - Electrochimica Acta. 53 (2007), H. 2 Y1 - 2007 SN - 0013-4686 SP - 305 EP - 311 ER - TY - JOUR A1 - Christiaens, P. A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Bijnens, N. A1 - Williams, O. A. A1 - Daenen, M. A1 - Haenen, K. A1 - Douthéret, O. A1 - Haen, J. d´ A1 - Mekhalif, Z. A1 - Schöning, Michael Josef A1 - Wagner, P. T1 - pH sensitivity of nanocrystalline diamond films JF - Physica status solidi (A). 204 (2007), H. 9 Y1 - 2007 SN - 0031-8965 SP - 2925 EP - 2930 ER - TY - JOUR A1 - Wagner, Torsten A1 - Molina, R. A1 - Biselli, Manfred A1 - Canzoneri, Michele A1 - Schnitzler, Thomas A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - A light-addressable potentiometric sensor system for fast, simultaneous and spatial detection of the metabolic activity of biological cells JF - Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.) Y1 - 2007 SN - 1-4244-0841-5 N1 - Eurosensors 21, 2007, Lyon ; International Conference on Solid-State Sensors, Actuators and Microsystems 14, 2007, Lyon SP - 1107 EP - 1110 PB - IEEE CY - Piscataway ER - TY - JOUR A1 - Christiaens, P. A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Bijnens, N. A1 - Williams, O. A. A1 - Daenen, M. A1 - Haenen, K. A1 - Schöning, Michael Josef A1 - Wagner, P. T1 - Nanocrystalline diamond-based field-effect capacitive pH sensor JF - Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.) Y1 - 2007 SN - 1-4244-0841-5 N1 - Eurosensors 21, 2007, Lyon ; International Conference on Solid-State Sensors, Actuators and Microsystems 14, 2007, Lyon SP - 1891 EP - 1894 PB - IEEE CY - Piscataway ER - TY - JOUR A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors (LAPS): recent trends and applications JF - Electrochemical sensor analysis / edited by S. Alegret ... Y1 - 2007 SN - 978-0-444-53053-0 N1 - Wilson & Wilson's comprehensive analytical chemistry ; 49 SP - 87 EP - 128 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Kloock, Joachim P. A1 - Schöning, Michael Josef T1 - Determination of cadmium concentration and pH value in aqueous solutions by means of a handheld light-addressable potentiometric sensor (LAPS) device JF - Electrochemical sensor analysis / edited by S. Alegret ... Y1 - 2007 SN - 978-0-444-53133-9 N1 - Wilson & Wilson's comprehensive analytical chemistry ; 49 SP - e35 EP - e44 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Maris, Rob J. A1 - Ackermann, Hans-Josef A1 - Otto, Ralph A1 - Beging, Stefan A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations JF - Sensors and Actuators B: Chemical . 127 (2007), H. 1 Y1 - 2007 SN - 0925-4005 SP - 217 EP - 223 ER - TY - JOUR A1 - Miyamoto, K. A1 - Kuwabara, Yohei A1 - Kanoh, Shin'ichiro A1 - Yoshinobu, Tatsuo A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Chemical image scanner based on FDM-LAPS JF - Sensors and Actuators B: Chemical. 137 (2009), H. 2 Y1 - 2009 SN - 0925-4005 SP - 533 EP - 538 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Sugawara, Yuri A1 - Kanoh, Shin´ichiro A1 - Yoshinobu, Tatsuo A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Image correction method for the chemical imaging sensor JF - Sensors and Actuators B: Chemical. 144 (2010), H. 2 Y1 - 2010 N1 - 22nd International Conference on Eurosensors - Dresden, Germany, 7-10 September 2008 ; Eurosensors ; (22, 2008, Dresden) SP - 344 EP - 348 ER - TY - JOUR A1 - Werner, Frederik A1 - Groebel, Simone A1 - Schuhmacher, K. A1 - Spelthahn, Heiko A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Bestimmung der metabolischen Aktivität von Mikroorganismen während des Biogasbildungsprozesses JF - 9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.] Y1 - 2009 SN - 978-3-941298-44-6 N1 - Dresdner Sensor-Symposium ; (9, 2009, Dresden) SP - 201 EP - 204 PB - TUDpress CY - Dresden ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, K. A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - A high-density multi-point LAPS set-up using a VCSEL array and FPGA control JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 1483 EP - 1486 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Mimura, Shuhei A1 - Kanoh, Shin`ichiro A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Constant-phase-mode operation of the light-addressable potentiometric sensor JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 1487 EP - 1490 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, Ko-Ichiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging JF - Sensors and Actuators B: Chemical N2 - Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach to read out light-addressable potentiometric sensors (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device, which allows fast and flexible generation of light patterns. With the help of these light patterns, the sensor surface of the LAPS device can be addressed. The DLP approach has several advantages compared to conventional LAPS set-ups, e.g., the spot size and the shape of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of the measurement. In addition, the modulation frequency and intensity of the light beam are important parameters of the LAPS set-up. Within this work, the authors will discuss two different ways of light modulation by the DLP set-up, investigate the influence of different modulation frequencies and different light intensities as well as demonstrate the scanning capabilities of the new set-up by pH mapping on the sensor surface. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2010.12.003 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 34 EP - 39 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Schusser, Sebastian A1 - Spalthahn, Heiko A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Field-programmable gate array based controller for multi spot light-addressable potentiometric sensors with integrated signal correction mode JF - Electrochimica Acta N2 - A light-addressable potentiometric sensor (LAPS) can measure the concentration of one or several analytes at the sensor surface simultaneously in a spatially resolved manner. A modulated light pointer stimulates the semiconductor structure at the area of interest and a responding photocurrent can be read out. By simultaneous stimulation of several areas with light pointers of different modulation frequencies, the read out can be performed at the same time. With the new proposed controller electronic based on a field-programmable gate array (FPGA), it is possible to control the modulation frequencies, phase shifts, and light brightness of multiple light pointers independently and simultaneously. Thus, it is possible to investigate the frequency response of the sensor, and to examine the analyte concentration by the determination of the surface potential with the help of current/voltage curves and phase/voltage curves. Additionally, the ability to individually change the light intensities of each light pointer is used to perform signal correction. Y1 - 2011 U6 - http://dx.doi.org/10.1016/j.electacta.2011.03.012 SN - 0013-4686 VL - 56 IS - 26 SP - 9656 EP - 9660 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, Ko-ichiro A1 - Ackermann, Hans-Josef A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - FPGA-based LAPS device for the flexible design of sensing sites on functional interfaces JF - Physica Status Solidi (A). 207 (2010), H. 4 Y1 - 2010 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 SP - 844 EP - 849 ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Kanoh, Shin`ichiro A1 - Schöning, Michael Josef T1 - Phase-mode LAPS and its application to chemical imaging JF - Sensors and Actuators B: Chemical. 154 (2011), H. 1 Y1 - 2011 SN - 1873-3077 SP - 28 EP - 32 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Yoshida, Midori A1 - Sakai, Taito A1 - Matsuzaka, Atsushi A1 - Wagner, Torsten A1 - Kanoh, Sanoh A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Differential setup of light-addressable potentiometric sensor with an enzyme reactor in a flow channel JF - Japanese Journal of Applied Physics. 50 (2011) Y1 - 2011 SN - 0021-4922 SP - 04DL08-1 EP - 04DL08-5 PB - Japan Society of Applied Physics CY - Bristol ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Kanoh, Shin`ichiro A1 - Schöning, Michael Josef T1 - Phase-mode operation of FDM-LAPS JF - Sensor letters Y1 - 2011 SN - 1546-1971 VL - 9 IS - 2 SP - 691 EP - 694 PB - American Scientific Publishers CY - Stevenson Ranch, Calif. ER - TY - JOUR A1 - Werner, Frederik A1 - Krumbe, Christoph A1 - Schumacher, Katharina A1 - Groebel, Simone A1 - Spelthahn, Heiko A1 - Stellberg, Michael A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1340 EP - 1344 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, Ko-Ichiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - A high-density multi-point LAPS set-up using a VCSEL array and FPGA control JF - Sensors and Actuators B: Chemical. 154 (2011), H. 2 Y1 - 2011 SN - 1873-3077 N1 - EUROSENSORS XXIII SP - 124 EP - 128 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Mimura, Shuhei A1 - Kanoh, Shiníchiro A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Constant-phase-mode operation of the light-addressable potentiometric sensor JF - Sensors and Actuators B: Chemical. 154 (2011), H. 2 Y1 - 2011 SN - 1873-3077 N1 - EUROSENSORS XXIII SP - 119 EP - 123 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Groebel, Simone A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Selmer, Thorsten A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Überwachung der metabolischen Aktivität von Mikroorganismen zur Kontrolle des biologischen Prozesses im Biogasfermenter JF - Biogas 2011 : Energieträger der Zukunft ; 6. Fachtagung, Fachtagung Braunschweig, 08. und 09. Juni 2011 / VDI Energie und Umwelt Y1 - 2011 SN - 978-3-18-092121-1 N1 - Gesellschaft Energie und Umwelt ; Fachtagung Biogas ; (6 : ; 2011.06.08-09 : ; Braunschweig) ; VDI-Berichte ; 2121 SP - 285 EP - 286 PB - VDI-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Werner, Frederik A1 - Spelthahn, H. A1 - Schöning, Michael Josef A1 - Krumbe, C. A1 - Wagner, Torsten A1 - Yoshinobu, T. A1 - Keusgen, M. T1 - Neue Ansteuerungselektronik für LAPS-basierte Biosensoren zur gleichzeitig ortsaufgelösten Messung der pH-Konzentration JF - Sensoren und Messsysteme 2010 [Elektronische Ressource] : Vorträge der 15. ITG/GMA-Fachtagung vom 18. bis 19. Mai 2010 in Nürnberg / Informationstechnische Gesellschaft im VDE (ITG); VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA) Y1 - 2010 SN - 978-3-8007-3260-9 N1 - Fachtagung Sensoren und Messsysteme 15, 2010, Nürnberg ; Gesellschaft Mess- und Automatisierungstechnik SP - 109 EP - 114 PB - VDE Verlag CY - Berlin ER - TY - JOUR A1 - Wagner, Torsten A1 - Miyamoto, Ko-ichiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Novel combination of digital light processing (DLP) and light-addressable potentiometric sensors (LAPS) for flexible chemical imaging JF - Procedia Engineering. 5 (2010) Y1 - 2010 SN - 1877-7058 N1 - Eurosensor XXIV Conference SP - 520 EP - 523 ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Kaneko, Kazumi A1 - Matsuo, Akira A1 - Wagner, Torsten A1 - Kanoh, Shin`ichiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Miniaturized chemical imaging sensor system using an OLED display panel JF - Procedia Engineering. 5 (2010) Y1 - 2010 SN - 1877-7058 N1 - Eurosensor XXIV Conference SP - 516 EP - 519 ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, H. A1 - Florke, R. A1 - Wagner, P. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Controlling aseptic sterilization processes by means of a multi-sensor system Y1 - 2011 N1 - 2011 IEEE Workshop on Merging Fields of Computational Intelligence and Sensor Technology ; 11.-15. April 2011 Paris, France SP - 18 EP - 22 PB - IEEE CY - New York ER - TY - JOUR A1 - Wagner, Torsten A1 - Miyamoto, K. A1 - Werner, Frederik A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Flexible electrochemical imaging with “zoom-in” functionality by using a new type of light-addressable potentiometric sensor Y1 - 2011 N1 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) , Date: 5-9 June 2011 SP - 2133 EP - 2135 PB - IEEE CY - New York ER - TY - JOUR A1 - Miyamoto, K. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Multi-well structure for cell culture on the chemical imaging sensor Y1 - 2011 N1 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) , Date: 5-9 June 2011 SP - 2130 EP - 2132 PB - IEEE CY - New York ER - TY - JOUR A1 - Wagner, Torsten A1 - Miyamoto, Ko-ichiro A1 - Shigihara, Noriko A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Microfluidic systems with free definable sensor spots by an integrated light-addressable potentiometric sensor JF - Procedia Engineering. 25 (2011) Y1 - 2011 SN - 1877-7058 N1 - EurosensorsXXV ; Proc. Eurosensors XXV, September 4-7, 2011, Athens, Greece SP - 791 EP - 794 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Miyamoto, Ko-ichiro A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up JF - Procedia Engineering. 25 (2011) Y1 - 2011 SN - 1877-7058 N1 - EurosensorsXXV ; Proc. Eurosensors XXV, September 4-7, 2011, Athens, Greece SP - 346 EP - 349 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-Ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef ED - Yamaguchi, Takami T1 - Miniaturized and high-speed chemical imaging systems T2 - Nano-Biomedical Engineering 2012. Proceedings of the Tohoku University Global Centre of Excellence Programme, Sakura Hall, Tohoku University, Sendai Japan, 5 – 6 March 2012 Y1 - 2012 U6 - http://dx.doi.org/10.1142/9781848169067_0045 SP - 386 EP - 395 PB - World Scientific CY - Singapur ER - TY - JOUR A1 - Werner, Frederik A1 - Groebel, Simone A1 - Krumbe, Christoph A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Yoshinobu, Tatsuo A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Nutrient concentration-sensitive microorganism-based biosensor JF - Physica Status Solidi (a) Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100801 SN - 1862-6319 VL - 209 IS - 5 SP - 900 EP - 904 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Kaneko, Kazumi A1 - Matsuo, Akira A1 - Wagner, Torsten A1 - Kanoh, Shiníchiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Miniaturized chemical imaging sensor system using an OLED display panel JF - Sensors and Actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the two-dimensional distribution of specific ions or molecules in the solution. In this study, we developed a miniaturized chemical imaging sensor system with an OLED display panel as a light source that scans the sensor plate. In the proposed configuration, the display panel is placed directly below the sensor plate and illuminates the back surface. The measured area defined by illumination can be arbitrarily customized to fit the size and the shape of the sample to be measured. The waveform of the generated photocurrent, the current–voltage characteristics and the pH sensitivity were investigated and pH imaging with this miniaturized system was demonstrated. KW - LAPS KW - Light-addressable potentiometric sensor KW - Chemical imaging sensor KW - Organic light-emitting diode display Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2011.02.029 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 82 EP - 87 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, K. A1 - Ichimura, H. A1 - Wagner, Torsten A1 - Yoshinobu, T. A1 - Schöning, Michael Josef T1 - Chemical Imaging of ion Diffusion in a Microfluidic Channel JF - Procedia Engineering N2 - The chemical imaging sensor is a chemical sensor which is capable of visualizing the spatial distribution of chemical species in sample solution. In this study, a novel measurement system based on the chemical imaging sensor was developed to observe the inside of a Y-shaped microfluidic channel while injecting two sample solutions from two branches. From the collected chemical images, it was clearly observed that the injected solutions formed laminar flows in the microfluidic channel. In addition, ion diffusion across the laminar flows was observed. This label-free method can acquire quantitative data of ion distribution and diffusion in microfluidic devices, which can be used to determine the diffusion coefficients, and therefore, the molecular weights of chemical species in the sample solution. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.proeng.2012.09.289 SN - 1877-7058 N1 - Part of special issue "26th European Conference on Solid-State Transducers, EUROSENSOR 2012" IS - 47 SP - 886 EP - 889 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Shigiahara, N. A1 - Miyamoto, K. A1 - Suzurikawa, J. A1 - Finger, F. A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Light-addressable Potentiometric Sensors and Light–addressable Electrodes as a Combined Sensor-and-manipulator Microsystem with High Flexibility JF - Procedia Engineering N2 - This work describes the novel combination of the light-addressable electrode (LAE) and the light-addressable potentiometric sensor (LAPS) into a microsystem set-up. Both the LAE as well as the LAPS shares the principle of addressing the active spot by means of a light beam. This enables both systems to manipulate resp. to detect an analyte with a high spatial resolution. Hence, combining both principles into a single set-up enables the active stimulation e.g., by means of electrolysis and a simultaneous observation e.g., the response of an entrapped biological cell by detection of extracellular pH changes. The work will describe the principles of both technologies and the necessary steps to integrate them into a single set-up. Furthermore, examples of application and operation of such systems will be presented. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.proeng.2012.09.290 SN - 1877-7058 N1 - Part of special issue "26th European Conference on Solid-State Transducers, EUROSENSOR 2012" IS - 47 SP - 890 EP - 893 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Werner, Frederik A1 - Mansour, Ahmed A1 - Rateike, Franz-Matthias A1 - Schusser, Sebastian A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Keusgen, Michael A1 - Schöning, Michael Josef ED - Gerlach, Gerald T1 - Kompakter Aufbau eines lichtadressierbaren potentiometrischen Sensors mit verfahrbarem Diodenlaser T2 - 10. Dresdner Sensor-Symposium : Dresden, 5. - 7. Dezember 2011 ; miniaturisierte analytische Verfahren, Hochtemperatur-Sensoren, Sensoren für Bioprozess- und Verfahrenstechnik, Sensoren für die Medizin, Chemische Verfahrenstechnik, Lebensmittelanalytik, innovative Sensorlösungen, Sensoren für die Wasserqualität, Selbstüberwachung / Gerald Gerlach ... (Hg.) Dresdner Beiträge zur Sensorik. 43 Y1 - 2011 SN - 978-3-942710-53-4 SP - 277 EP - 280 PB - TUDpress CY - Dresden ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Hirayama, Yuji A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Visualization of enzymatic reaction in a microfluidic channel using chemical imaging sensor JF - Electrochimica acta Y1 - 2013 SN - 1873-3859 (E-Journal); 0013-4686 (Print) SP - Publ. online PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Takenaga, Shoko A1 - Herrera, Cony F. A1 - Werner, Frederik A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Öhlschläger, Peter A1 - Wagner, Torsten T1 - Detection of the metabolic activity of cells by differential measurements based on a single light-addressable potentiometric sensor chip T2 - 11. Dresdner Sensor-Symposium : 9.-11.12.2013 Y1 - 2013 SN - 978-3-9813484-5-3 SP - 63 EP - 67 ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Itabashi, Akinori A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - High-speed chemical imaging inside a microfluidic channel JF - Sensors and actuators. B: Chemical N2 - In this study, a high-speed chemical imaging system was developed for visualization of the interior of a microfluidic channel. A microfluidic channel was constructed on the sensor surface of the light-addressable potentiometric sensor (LAPS), on which the ion concentrations could be measured in parallel at up to 64 points illuminated by optical fibers. The temporal change of pH distribution inside the microfluidic channel was recorded at a maximum rate of 100 frames per second (fps). The high frame rate allowed visualization of moving interfaces and plugs in the channel even at a flow velocity of 111 mm/s, which suggests the feasibility of plug-based microfluidic devices for flow-injection analysis (FIA). Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.snb.2013.12.090 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 194 SP - 521 EP - 527 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Takenaga, Shoko A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Öhlschläger, Peter A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Toward multi-analyte bioarray sensors: LAPS-based on-chip determination of a Michaelis–Menten-like kinetics for cell culturing JF - Physica status solidi A : Applications and materials science N2 - The metabolic activity of Chinese hamster ovary (CHO) cells was observed using a light-addressable potentiometric sensor (LAPS). The dependency toward different glucose concentrations (17–200 mM) follows a Michaelis–Menten kinetics trajectory with Kₘ = 32.8 mM, and the obtained Kₘ value in this experiment was compared with that found in literature. In addition, the pH shift induced by glucose metabolism of tumor cells transfected with the HPV-16 genome (C3 cells) was successfully observed. These results indicate the possibility to determine the tumor cells metabolism with a LAPS-based measurement device. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330464 SN - 1521-396X (E); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1410 EP - 1415 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Seki, Kosuke A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution JF - Applied physics express : APEX N2 - A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) is proposed to achieve a higher spatial resolution of chemical images. The proposed method employs a combined light source that consists of a modulated light probe, which generates the alternating photocurrent signal, and a ring of constant illumination surrounding it. The constant illumination generates a sheath of carriers with increased concentration which suppresses the spread of photocarriers by enhanced recombination. A device simulation was carried out to verify the effect of constant illumination on the spatial resolution, which demonstrated that a higher spatial resolution can be obtained. Y1 - 2014 U6 - http://dx.doi.org/10.7567/APEX.7.067301 SN - 1882-0786 (E-Journa); 1882-0778 (Print) VL - 7 IS - 6 SP - 067301-4 PB - IOP CY - Bristol ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Theoretical study and simulation of light-addressable potentiometric sensors JF - Physica status solidi (A) : applications and materials N2 - The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330354 SN - 0031-8965 VL - 211 IS - 6 SP - 1467 EP - 1472 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution JF - Sensors and actuators B: Chemical N2 - As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.snb.2014.08.016 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 204 SP - 659 EP - 665 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Werner, Frederik A1 - Yoshinobu, T. A1 - Miyamoto, K. A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Semiconductor-based sensors for imaging of chemical processes T2 - Sensoren und Messsysteme 2014 ; Beiträge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in Nürnberg. (ITG-Fachbericht ; 250) Y1 - 2014 SN - 978-3-8007-3622-5 SP - 1 EP - 5 PB - VDE-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor JF - Sensors and actuators B: Chemical N2 - The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.snb.2014.09.002 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 207, Part B SP - 926 EP - 932 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Seki, Kosuke A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Device simulation of the light-addressable potentiometric sensor with a novel photoexcitation method for a higher spatial resolution JF - Procedia Engineering N2 - A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) realized a higher spatial resolution of chemical imaging. In this method, a modulated light probe, which generates the alternating photocurrent signal, is surrounded by a ring of constant light, which suppresses the lateral diffusion of photocarriers by enhancing recombination. A device simulation verified that a higher spatial resolution could be obtained by adjusting the gap between the modulated and constant light. It was also found that a higher intensity and a longer wavelength of constant light was more effective. However, there exists a tradeoff between the spatial resolution and the amplitude of the photocurrent, and thus, the signal-to-noise ratio. A tilted incidence of constant light was applied, which could achieve even higher resolution with a smaller loss of photocurrent. KW - Light-addressable Potentiometric Sensor KW - novel photoexcitation method KW - tilted constant illumination KW - spatial resolution Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.369 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 456 EP - 459 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, K. A1 - Seki, K. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination JF - Procedia Engineering N2 - The chemical imaging sensor, which is based on the principle of the light-addressable potentiometric sensor (LAPS), is a powerful tool to visualize the spatial distribution of chemical species on the sensor surface. The spatial resolution of this sensor depends on the diffusion of photocarriers excited by a modulated light. In this study, a novel hybrid fiber-optic illumination was developed to enhance the spatial resolution. It consists of a modulated light probe to generate a photocurrent signal and a ring of constant light, which suppresses the lateral diffusion of minority carriers excited by the modulated light. It is demonstrated that the spatial resolution was improved from 92 μm to 68 μm. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.563 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 612 EP - 615 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Wagner, Torsten A1 - Yoshinobu, T. A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensor as semiconductor-based sensor platform for (bio-) chemical sensing T2 - Armenian Journal of Physics Y1 - 2008 SN - 1829-1171 SP - 99 EP - 103 ER - TY - JOUR A1 - Wagner, Torsten A1 - Miyamoto, K. A1 - Werner, Frederik A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Utilising Digital Micro-Mirror Device (DMD) as Scanning Light Source for Light-Addressable Potentiometric Sensors (LAPS) Y1 - 2011 U6 - http://dx.doi.org/10.1166/sl.2011.1620 VL - 9 IS - 2 SP - 812 EP - 815 PB - American Scientific Publishers CY - Stevenson Ranch, Calif. ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abouzar, Maryam H. A1 - Wagner, Torsten A1 - Näther, Niko A1 - Rolka, David A1 - Yoshinobu, Tatsuo A1 - Kloock, Joachim P. A1 - Turek, Monika A1 - Ingebrandt, Sven A1 - Poghossian, Arshak T1 - A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices T2 - MRS Proceedings Y1 - 2006 U6 - http://dx.doi.org/10.1557/PROC-0952-F08-02 N1 - Vol. 952 - Symposium F - Integrated Nanosensors SP - 1 EP - 9 ER - TY - CHAP A1 - Kloock, Joachim P. A1 - Moreno, Lia A1 - Huachupoma, S. A1 - Xu, J. A1 - Wagner, Torsten A1 - Bratov, A. A1 - Doll, T. A1 - Vlasov, Y. A1 - Schöning, Michael Josef ED - Gerlach, Gerald T1 - Halbleiterbasierte Schwermetallsensorik auf der Basis von Chalkogenidgläsern für zukünftige „Lab on Chip“-Anwendungen T2 - 7. Dresdner Sensor-Symposium - Neue Herausforderungen und Anwendungen in der Sensortechnik Y1 - 2005 SN - 3-938863-29-3 SP - 221 EP - 224 PB - TUDpress, Verl. der Wissenschaften CY - Dresden ER - TY - CHAP A1 - Wagner, Torsten A1 - Yoshinobu, T. A1 - Otto, R. A1 - Rao, C. A1 - Molina, R. A1 - Schöning, Michael Josef T1 - Licht-adressierbare potentiometrische Sensorsysteme – Konzepte und Anwendungen T2 - Sensoren und Mess-Systeme 2006 : Vorträge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau Y1 - 2006 SN - 3-8007-2939-3 SP - 165 EP - 168 PB - VDE Verl. CY - Berlin ER - TY - CHAP A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Preface of the Special Issue of I3S 2005 in Jülich (Germany) N2 - International Symposium on Sensor Science, I3S 2005 <3; 2005; Juelich, Germany> In: Sensors 2006, 6, 260-261 ISSN 1424-8220 KW - Biosensor KW - I3S 2005 KW - International Symposium on Sensor Science Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1365 ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Pieper, Martin T1 - Simulating the electromagnetic‐thermal treatment of thin aluminium layers for adhesion improvement JF - Physica status solidi (a) N2 - A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431893 SN - 1862-6319 VL - Vol. 212 IS - 6 SP - 1234 EP - 1241 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Kirschbaum, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide JF - Physica status solidi (a) N2 - Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431944 SN - 1862-6319 VL - 212 IS - 6 SP - 1368 EP - 1374 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Dantism, S. A1 - Takenaga, S. A1 - Wagner, P. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells JF - Procedia Engineering N2 - LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.647 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 384 EP - 387 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Bing, Yu A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor JF - Procedia Engineering N2 - The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.806 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 936 EP - 939 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Takenaga, Shoko A1 - Schneider, Benno A1 - Erbay, E. A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process JF - Physica status solidi (a) N2 - A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201532053 SN - 1862-6319 VL - 212 IS - 6 SP - 1347 EP - 1352 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Miyamato, Ko-ichiro A1 - Sakakita, Sakura A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface JF - Electrochimica Acta N2 - The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.electacta.2015.07.184 SN - 0013-4686 VL - 183 SP - 137 EP - 142 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Breuer, Lars A1 - Raue, Markus A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Light-stimulated hydrogel actuators with incorporated graphene oxide for microfluidic applications T2 - 12. Dresdner Sensor-Symposium 2015 Y1 - 2015 U6 - http://dx.doi.org/10.5162/12dss2015/P5.8 SP - 206 EP - 209 ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Yu, Bing A1 - Isoda, Hiroko A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor JF - Sensors and Actuators B: Chemical N2 - The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) in the sample. In this study, a novel cell assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the recovery of defects in a cell layer brought into proximity of the sensing surface. A reduced impedance at a defect formed artificially in a cell layer was successfully visualized in a photocurrent image. The cell layer was cultured over two weeks, during which the temporal change of the photocurrent distribution corresponding to the recovery of the defect was observed. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.04.018 SN - 0925-4005 VL - 236 SP - 965 EP - 969 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Patrick A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system JF - Physica status solidi (a) N2 - On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable “down times” during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements. Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201533043 SN - 1862-6300 VL - 213 IS - 6 SP - 1479 EP - 1485 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Strobel, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Hydrogels with incorporated graphene oxide as light-addressable actuator materials for cell culture environments in lab-on-chip systems JF - Physica status solidi (a) N2 - Abstractauthoren Graphene oxide (GO) nanoparticles were incorporated in temperature-sensitive Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels. The nanoparticles increase the light absorption and convert light energy into heat efficiently. Thus, the hydrogels with GO can be stimulated spatially resolved by illumination as it was demonstrated by IR thermography. The temporal progression of the temperature maximum was detected for different concentrations of GO within the polymer network. Furthermore, the compatibility of PNIPAAm hydrogels with GO and cell cultures was investigated. For this purpose, culture medium was incubated with hydrogels containing GO and the viability and morphology of chinese hamster ovary (CHO) cells was examined after several days of culturing in presence of this medium. Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201533056 SN - 1862-6300 VL - 213 IS - 6 SP - 1520 EP - 1525 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wagner, Torsten A1 - Vornholt, Wolfgang A1 - Werner, Frederik A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-Ichiro A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening JF - Physics in medicine N2 - The light-addressable potentiometric sensor (LAPS) has the unique feature to address different regions of a sensor surface without the need of complex structures. Measurements at different locations on the sensor surface can be performed in a common analyte solution, which distinctly simplifies the fluidic set-up. However, the measurement in a single analyte chamber prevents the application of different drugs or different concentrations of a drug to each measurement spot at the same time as in the case of multi-reservoir-based set-ups. In this work, the authors designed a LAPS-based set-up for cell culture screening that utilises magnetic beads loaded with the endotoxin (lipopolysaccharides, LPS), to generate a spatially distributed gradient of analyte concentration. Different external magnetic fields can be adjusted to move the magnetic beads loaded with a specific drug within the measurement cell. By recording the metabolic activities of a cell layer cultured on top of the LAPS surface, this work shows the possibility to apply different concentrations of a sample along the LAPS measurement spots within a common analyte solution. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.phmed.2016.03.001 SN - 2352-4510 VL - 2016 IS - 1 SP - 2 EP - 7 ER - TY - JOUR A1 - Doll, Theodor A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Engineering of functional interfaces / Theodor Doll ; Torsten Wagner ; Patrick Wagner ; Michael J. Schöning (eds.) JF - Physica status solidi (a) Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201670641 SN - 1862-6319 VL - 213 IS - 6 SP - 1393 EP - 1394 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Ko-Ichiro A1 - Sato, Takuya A1 - Abe, Minami A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Light-addressable potentiometric sensor as a sensing element in plug-based microfluidic devices JF - Micromachines N2 - A plug-based microfluidic system based on the principle of the light-addressable potentiometric sensor (LAPS) is proposed. The LAPS is a semiconductor-based chemical sensor, which has a free addressability of the measurement point on the sensing surface. By combining a microfluidic device and LAPS, ion sensing can be performed anywhere inside the microfluidic channel. In this study, the sample solution to be measured was introduced into the channel in a form of a plug with a volume in the range of microliters. Taking advantage of the light-addressability, the position of the plug could be monitored and pneumatically controlled. With the developed system, the pH value of a plug with a volume down to 400 nL could be measured. As an example of plug-based operation, two plugs were merged in the channel, and the pH change was detected by differential measurement. KW - light-addressable potentiometric sensor KW - plug-based microfluidic device KW - chemical sensor Y1 - 2016 U6 - http://dx.doi.org/10.3390/mi7070111 SN - 2072-666X N1 - This article belongs to the Special Issue "Micro/Nano Devices for Chemical Analysis" VL - 7 IS - 7 SP - 111 PB - MDPI CY - Basel ER - TY - JOUR A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Buniatyan, V. V. A1 - Wagner, Torsten A1 - Miamoto, K. A1 - Yoshinobu, T. A1 - Schöning, Michael Josef T1 - Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk JF - Sensor and Actuators B: Chemical N2 - The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.01.047 SN - 0925-4005 IS - 244 SP - 1071 EP - 1079 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species JF - Annual Review of Analytical Chemistry N2 - A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1146/annurev-anchem-061516-045158 SN - 1936-1327 VL - 10 SP - 225 EP - 246 PB - Annual Reviews CY - Palo Alto, Calif. ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors JF - Electrochimica Acta N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric sensor with an electrolyte/insulator/semiconductor (EIS) structure, which is able to monitor analyte concentrations of (bio-)chemical species in aqueous solutions in a spatially resolved way. Therefore, it is also an appropriate tool to record 2D-chemical images of concentration variations on the sensor surface. In the present work, two differential, LAPS-based measurement principles are introduced to determine the metabolic activity of Escherichia coli (E. coli) K12 and Chinese hamster ovary (CHO) cells as test microorganisms. Hereby, we focus on i) the determination of the extracellular acidification rate (ΔpH/min) after adding glucose solutions to the cell suspensions; and ii) recording the amplitude increase of the photocurrent (Iph) related to the produced acids from E. coli K12 bacteria and CHO cells on the sensor surface by 2D-chemical imaging. For this purpose, 3D-printed multi-chamber structures were developed and mounted on the planar sensor-chip surface to define four independent compartments, enabling differential measurements with varying cell concentrations. The differential concept allows eliminating unwanted drift effects and, with the four-chamber structures, measurements on the different cell concentrations were performed simultaneously, thus reducing also the overall measuring time. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.05.196 SN - 0013-4686 VL - 246 SP - 234 EP - 241 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Kremers, Alexander A1 - Wagner, Torsten A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring JF - physica status solidi a : applications and materials sciences N2 - A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1002/pssa.201600912 SN - 1862-6319 IS - Early View PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Hayashi, Kosuke A1 - Sakamoto, Azuma A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance JF - Sensor and Actuators B: Chemical N2 - An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change. KW - Negative impedance convertor KW - Resonance-mode measurement KW - Chemical sensor KW - EIS capacitive sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.03.002 SN - 0925-4005 VL - 248 SP - 1006 EP - 1010 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor JF - Sensor and Actuators B: Chemical N2 - To study chemical and biological processes, spatially resolved determination of the concentrations of one or more analyte species is of distinct interest. With a light-addressable potentiometric sensor (LAPS), chemical images can be created, which visualize the concentration distribution above the sensor plate. One important challenge is to achieve a good lateral resolution in order to detect events that take place in a small and limited region. LAPS utilizes a focused light spot to address the measurement region. By moving this light spot along the semiconductor sensor plate, the concentration distribution can be observed. In this study, we show that utilizing a pulse as light excitation instead of a traditionally used continuously modulated light excitation, the lateral resolution can be improved by a factor of 6 or more. KW - Chemical images KW - LAPS KW - Light-addressable potentiometric sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.02.057 SN - 0925-4005 VL - 248 SP - 961 EP - 965 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Breuer, Lars A1 - Guthmann, Eric A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Light-Stimulated Hydrogels with Incorporated Graphene Oxide as Actuator Material for Flow Control in Microfluidic Applications T2 - Proceedings Eurosensors 2017 Conference, Paris, France, 3–6 September 2017 Y1 - 2017 U6 - http://dx.doi.org/10.3390/proceedings1040524 SP - 1 EP - 4 ER - TY - CHAP A1 - Miyamoto, Ko-ichiro A1 - Suto, Takeyuki A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Restraining the Diffusion of Photocarriers to Improve the Spatial Resolution of the Chemical Imaging Sensor T2 - MDPI Proceedings Y1 - 2017 U6 - http://dx.doi.org/10.3390/proceedings1040477 N1 - Eurosensors 2017 Conference, Paris, France, 3–6 September 2017 VL - 1 IS - 4 ER - TY - JOUR A1 - Breuer, Lars A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography JF - Sensors and Actuators A: Physical Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.sna.2017.11.031 SN - 0924-4247 VL - 268 SP - 126 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Gonzalez, Laura Osorio A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development and characterization of a field-effect biosensor for the detection of acetoin JF - Biosensors and Bioelectronics N2 - A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2018.05.023 VL - 115 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Optimization of Cell-Based Multi-Chamber LAPS Measurements Utilizing FPGA-Controlled Laser-Diode Modules JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric device, which detects concentration changes of an analyte solution on the sensor surface in a spatially resolved way. It uses a light source to generate electron–hole pairs inside the semiconductor, which are separated in the depletion region due to an applied bias voltage across the sensor structure and hence, a surface-potential-dependent photocurrent can be read out. However, depending on the beam angle of the light source, scattering effects can occur, which influence the recorded signal in LAPS-based differential measurements. To solve this problem, a novel illumination unit based on a field programmable gate array (FPGA) consisting of 16 small-sized tunable infrared laser-diode modules (LDMs) is developed. Due to the improved focus of the LDMs with a beam angle of only 2 mrad, undesirable scattering effects are minimized. Escherichia coli (E. coli) K12 bacteria are used as a test microorganism to study the extracellular acidification on the sensor surface. Furthermore, a salt bridge chamber is built up and integrated with the LAPS system enabling multi-chamber differential measurements with a single Ag/AgCl reference electrode. Y1 - 2018 U6 - http://dx.doi.org/10.1002/pssa.201800058 SN - 1862-6319 VL - 215 IS - 15 SP - Article number 1800058 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Welden, Rene A1 - Scheja, Sabrina A1 - Schöning, Michael Josef A1 - Wagner, Patrick A1 - Wagner, Torsten T1 - Electrochemical Evaluation of Light‐Addressable Electrodes Based on TiO2 for the Integration in Lab‐on‐Chip Systems JF - physica status solidi a : applications and materials sciences N2 - In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol–gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated. Y1 - 2018 U6 - http://dx.doi.org/10.1002/pssa.201800150 SN - 1862-6319 VL - 215 IS - 15 SP - Article number 1800150 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Koichiro A1 - Seki, Kosuke A1 - Suto, Takeyuki A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Improved spatial resolution of the chemical imaging sensor with a hybrid illumination that suppresses lateral diffusion of photocarriers JF - Sensor and Actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor capable of visualizing pH and ion distributions. The spatial resolution depends on the lateral diffusion of photocarriers generated by illumination of the semiconductor substrate. In this study, two types of optical setups, one based on a bundle of optical fibers and the other based on a binocular tube head, were developed to project a hybrid illumination of a modulated light beam and a ring-shaped constant illumination onto the sensor plate. An improved spatial resolution was realized by the ring-shaped constant illumination, which suppressed lateral diffusion of photocarriers by enhanced recombination due to the increased carrier concentration. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.snb.2018.07.016 SN - 0925-4005 VL - 273 SP - 1328 EP - 1333 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Yoshinobu, Tatsuo A1 - Krause, Steffi A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - (Bio-)chemical Sensing and Imaging by LAPS and SPIM T2 - Label-free biosensing: advanced materials, devices and applications N2 - The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications. KW - Chemical imaging KW - Field-effect device KW - Light-addressable potentiometric sensor KW - Potentiometry Y1 - 2018 SN - 978-3-319-75219-8 SP - 103 EP - 132 PB - Springer CY - Cham ER - TY - JOUR A1 - Breuer, Lars A1 - Pilas, Johanna A1 - Guthmann, Eric A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Towards light-addressable flow control: responsive hydrogels with incorporated graphene oxide as laser-driven actuator structures within microfluidic channels JF - Sensor and Actuators B: Chemical Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.snb.2019.02.086 SN - 0925-4005 VL - 288 SP - 579 EP - 585 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Poghossian, Arshak A1 - Miyamoto, K.I. A1 - Werner, C.F. A1 - Krause, S. A1 - Yoshinobu, T. T1 - Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging T2 - Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7 Y1 - 2018 SN - 9780128097397 SP - 295 EP - 308 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Wagner, Torsten A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria JF - Sensors N2 - Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process. Y1 - 2019 U6 - http://dx.doi.org/10.3390/s19214692 SN - 1424-8220 VL - 19 IS - 21 PB - MDPI CY - Basel ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.111628 SN - 0956-5663 VL - 143 IS - 111628 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS) JF - Physics in Medicine N2 - Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO–K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO–K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.phmed.2020.100030 SN - 2352-4510 VL - 10 IS - 100030 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Welden, Rene A1 - Jablonski, Melanie A1 - Wege, Christina A1 - Keusgen, Michael A1 - Wagner, Patrick Hermann A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase JF - Biosensors N2 - The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte’s pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS. KW - microfluidics KW - enzyme kinetics KW - actuator-sensor system KW - light-addressable electrode KW - light-addressable potentiometric sensor Y1 - 2021 U6 - http://dx.doi.org/10.3390/bios11060171 SN - 2079-6374 N1 - This article belongs to the Special Issue "Selected Papers from the 1st International Electronic Conference on Biosensors (IECB 2020)" VL - 11 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Itabashi, Akinori A1 - Kosaka, Naoki A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - High-speed chemical imaging system based on front-side-illuminated LAPS JF - Sensors and actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the spatial distribution of specific ions on the sensing surface. The conventional chemical imaging system based on the light-addressable potentiometric sensor (LAPS), however, required a long time to obtain a chemical image, due to the slow mechanical scan of a single light beam. For high-speed imaging, a plurality of light beams modulated at different frequencies can be employed to measure the ion concentrations simultaneously at different locations on the sensor plate by frequency division multiplex (FDM). However, the conventional measurement geometry of back-side illumination limited the bandwidth of the modulation frequency required for FDM measurement, because of the low-pass filtering characteristics of carrier diffusion in the Si substrate. In this study, a high-speed chemical imaging system based on front-side-illuminated LAPS was developed, which achieved high-speed spatiotemporal recording of pH change at a rate of 70 frames per second. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.snb.2013.03.016 SN - 1873-3077 VL - 182 SP - 315 EP - 321 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Frequency behaviour of light-addressable potentiometric sensors JF - Physica Status Solidi (A) N2 - Light-addressable potentiometric sensors (LAPS) are semiconductor-based potentiometric sensors, with the advantage to detect the concentration of a chemical species in a liquid solution above the sensor surface in a spatially resolved manner. The addressing is achieved by a modulated and focused light source illuminating the semiconductor and generating a concentration-depending photocurrent. This work introduces a LAPS set-up that is able to monitor the electrical impedance in addition to the photocurrent. The impedance spectra of a LAPS structure, with and without illumination, as well as the frequency behaviour of the LAPS measurement are investigated. The measurements are supported by electrical equivalent circuits to explain the impedance and the LAPS-frequency behaviour. The work investigates the influence of different parameters on the frequency behaviour of the LAPS. Furthermore, the phase shift of the photocurrent, the influence of the surface potential as well as the changes of the sensor impedance will be discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200929 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 884 EP - 891 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Ichimura, Hiroki A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel JF - Sensors and actuators. B: Chemical N2 - The chemical imaging sensor is a device to visualize the spatial distribution of chemical species based on the principle of LAPS (light-addressable potentiometric sensor), which is a field-effect chemical sensor based on semiconductor. In this study, the chemical imaging sensor has been applied to investigate the ion profile of laminar flows in a microfluidic channel. The chemical images (pH maps) were collected in a Y-shaped microfluidic channel while injecting HCl and NaCl solutions into two branches. From the chemical images, it was clearly observed that the injected solutions formed laminar flows in the channel. In addition, ion diffusion across the laminar flows was observed, and the diffusion coefficient could be derived by fitting the pH profiles to the Fick's equation. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.snb.2013.04.057 SN - 1873-3077 (E-Journal); 0925-4005 (Print) N1 - Part of special issue "Selected Papers from the 26th European Conference on Solid-State Transducers" VL - 189 SP - 240 EP - 245 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies JF - Chemosensors N2 - The artificial olfactory image was proposed by Lundström et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices. KW - visualization KW - light-addressing technologies KW - scanned light pulse technique KW - field-effect structure KW - MOS KW - metal-oxide-semiconductor structure KW - catalytic metal KW - electronic nose KW - gas sensor KW - artificial olfactory image Y1 - 2024 U6 - http://dx.doi.org/10.3390/chemosensors12020020 SN - 2227-9040 N1 - This article belongs to the Special Issue "An Exciting Journey of Chemical Sensors and Biosensors: A Theme Issue in Honor of Professor Ingemar Lundström" Corresponding author: Tatsuo Yoshinobu, Michael J. Schöning VL - 12 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Selmer, Thorsten A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.111332 VL - 139 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Effect of plasma treatment on the sensor properties of a light‐addressable potentiometric sensor (LAPS) JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment. Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900259 SN - 1862-6319 N1 - Corresponding author: Torsten Wagner VL - 216 IS - 20 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Dahmen, Markus A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth JF - Sensors and Actuators B: Chemical N2 - As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.snb.2020.128232 SN - 0925-4005 VL - 320 IS - Art. 128232 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Jablonski, Melanie A1 - Kipp, Carina Ronja A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Selmer, Thorsten A1 - Siegert, Petra T1 - Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase JF - RSC Advances N2 - α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated. Y1 - 2020 U6 - http://dx.doi.org/10.1039/D0RA02066D SN - 2046-2069 VL - 10 SP - 12206 EP - 12216 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Welden, Rene A1 - Schöning, Michael Josef A1 - Wagner, Patrick H. A1 - Wagner, Torsten T1 - Light-Addressable Electrodes for Dynamic and Flexible Addressing of Biological Systems and Electrochemical Reactions JF - Sensors N2 - In this review article, we are going to present an overview on possible applications of light-addressable electrodes (LAE) as actuator/manipulation devices besides classical electrode structures. For LAEs, the electrode material consists of a semiconductor. Illumination with a light source with the appropiate wavelength leads to the generation of electron-hole pairs which can be utilized for further photoelectrochemical reaction. Due to recent progress in light-projection technologies, highly dynamic and flexible illumination patterns can be generated, opening new possibilities for light-addressable electrodes. A short introduction on semiconductor–electrolyte interfaces with light stimulation is given together with electrode-design approaches. Towards applications, the stimulation of cells with different electrode materials and fabrication designs is explained, followed by analyte-manipulation strategies and spatially resolved photoelectrochemical deposition of different material types. Y1 - 2020 U6 - http://dx.doi.org/10.3390/s20061680 SN - 1424-8220 VL - 20 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Jablonski, Melanie A1 - Münstermann, Felix A1 - Nork, Jasmina A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Keusgen, Michael A1 - Siegert, Petra A1 - Schöning, Michael Josef T1 - Capacitive field‐effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths JF - physica status solidi (a) applications and materials science N2 - An acetoin biosensor based on a capacitive electrolyte–insulator–semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance–voltage, and constant capacitance methods, respectively. KW - acetoin KW - acetoin reductase KW - alcoholic beverages KW - biosensors KW - capacitive field-effect sensors Y1 - 2021 U6 - http://dx.doi.org/10.1002/pssa.202000765 SN - 1862-6319 VL - 218 IS - 13 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Welden, Rene A1 - Nagamine Komesu, Cindy A. A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Photoelectrochemical enzymatic penicillin biosensor: A proof-of-concept experiment JF - Electrochemical Science Advances N2 - Photoelectrochemical (PEC) biosensors are a rather novel type of biosensors thatutilizelighttoprovideinformationaboutthecompositionofananalyte,enablinglight-controlled multi-analyte measurements. For enzymatic PEC biosensors,amperometric detection principles are already known in the literature. In con-trast, there is only a little information on H+-ion sensitive PEC biosensors. Inthis work, we demonstrate the detection of H+ions emerged by H+-generatingenzymes, exemplarily demonstrated with penicillinase as a model enzyme on atitanium dioxide photoanode. First, we describe the pH sensitivity of the sensorand study possible photoelectrocatalytic reactions with penicillin. Second, weshow the enzymatic PEC detection of penicillin. KW - enzymatic biosensor KW - penicillin KW - penicillinase KW - photoelectrochemistry KW - titanium dioxide photoanode Y1 - 2021 U6 - http://dx.doi.org/10.1002/elsa.202100131 SN - 2698-5977 N1 - Corresponding auhtor: Michael J. Schöning VL - 2 IS - 4 SP - 1 EP - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Vahidpour, Farnoosh A1 - Guthman, Eric A1 - Arreola, Julia A1 - Alghazali, Yousef H. M. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Assessment of Various Process Parameters for Optimized Sterilization Conditions Using a Multi-Sensing Platform JF - Foods N2 - In this study, an online multi-sensing platform was engineered to simultaneously evaluate various process parameters of food package sterilization using gaseous hydrogen peroxide (H₂O₂). The platform enabled the validation of critical aseptic parameters. In parallel, one series of microbiological count reduction tests was performed using highly resistant spores of B. atrophaeus DSM 675 to act as the reference method for sterility validation. By means of the multi-sensing platform together with microbiological tests, we examined sterilization process parameters to define the most effective conditions with regards to the highest spore kill rate necessary for aseptic packaging. As these parameters are mutually associated, a correlation between different factors was elaborated. The resulting correlation indicated the need for specific conditions regarding the applied H₂O₂ gas temperature, the gas flow and concentration, the relative humidity and the exposure time. Finally, the novel multi-sensing platform together with the mobile electronic readout setup allowed for the online and on-site monitoring of the sterilization process, selecting the best conditions for sterility and, at the same time, reducing the use of the time-consuming and costly microbiological tests that are currently used in the food package industry. KW - spore kill rate KW - sterility KW - aseptic parameters KW - multi-sensing platform KW - gaseous hydrogen peroxide Y1 - 2022 U6 - http://dx.doi.org/10.3390/foods11050660 SN - 2304-8158 N1 - This article belongs to the Special Issue "Sensors and Biosensors Application for Food Industries" VL - 11 IS - 5 PB - MDPI CY - Basel ER - TY - RPRT A1 - Siegert, Petra A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Selmer, Thorsten T1 - Abschlussbericht zum Projekt zur Überwachung biotechnologischer Prozesse mittels Diacetyl-/Acetoin-Biosensor und Evaluierung von Acetoin-Reduktasen zur Verwendung in Biotransformationen Y1 - 2022 N1 - Laufzeit: 01.01.2016 – 31.12.2019 (verlängert bis 31.12.2020) Förderkennzeichen: 322-8.03.04.02-FH-Struktur 2016/02 Gefördert durch: Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen CY - Aachen ER -