TY - JOUR A1 - Seifarth, Volker A1 - Schehl, D. A1 - Linder, Peter A1 - Gossmann, Matthias A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Porst, Dariusz A1 - Preiß, C. A1 - Kayser, Peter A1 - Pack, O. A1 - Temiz Artmann, Aysegül T1 - Ureplace: development of a bioreactor for in vitro culturing of cell seeded tubular vessels on collagen scaffolds N2 - The demand of replacements for inoperable organs exceeds the amount of available organ transplants. Therefore, tissue engineering developed as a multidisciplinary field of research for autologous in-vitro organs. Such three dimensional tissue constructs request the application of a bioreactor. The UREPLACE bioreactor is used to grow cells on tubular collagen scaffolds OPTIMAIX Sponge 1 with a maximal length of 7 cm, in order to culture in vitro an adequate ureter replacement. With a rotating unit, (urothelial) cells can be placed homogeneously on the inner scaffold surface. Furthermore, a stimulation is combined with this bioreactor resulting in an orientation of muscle cells. These culturing methods request a precise control of several parameters and actuators. A combination of a LabBox and the suitable software LabVision is used to set and conduct parameters like rotation angles, velocities, pressures and other important cell culture values. The bioreactor was tested waterproof successfully. Furthermore, the temperature controlling was adjusted to 37 °C and the CO2 - concentration regulated to 5 %. Additionally, the pH step responses of several substances showed a perfect functioning of the designed flow chamber. All used software was tested and remained stable for several days. KW - Tissue Engineering KW - Bioreaktor KW - Organkultur KW - Harnleiter Y1 - 2011 ER - TY - JOUR A1 - Seifarth, Volker A1 - Goßmann, Matthias A1 - Grosse, J. O. A1 - Becker, C. A1 - Heschel, I. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds JF - Urologia Internationalis Y1 - 2015 U6 - http://dx.doi.org/10.1159/000368419 SN - 0042-1138 VL - 2015 IS - 95 SP - 106 EP - 113 PB - Karger CY - Basel ER - TY - JOUR A1 - Seifarth, Volker A1 - Grosse, Joachim O. A1 - Grossmann, Matthias A1 - Janke, Heinz Peter A1 - Arndt, Patrick A1 - Koch, Sabine A1 - Epple, Matthias A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation JF - Journal of Biomaterials Applications Y1 - 2017 U6 - http://dx.doi.org/10.1177/0885328217723178 SN - 1530-8022 VL - 32 IS - 3 SP - 321 EP - 330 PB - Sage CY - London ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - THES A1 - Seifarth, Volker T1 - Ureteral tissue engineering : development of a bioreactor system and subsequent characterization of the generated biohybrids Y1 - 2015 N1 - Duisburg, Essen, Universität Duisburg-Essen, Diss., 2015 PB - Universitätsbibliothek Duisburg-Essen CY - Duisburg ; Essen ER -