TY - GEN A1 - Frauenrath, Tobias A1 - Pfeiffer, Harald A1 - Hezel, Fabian A1 - Dieringer, Matthias A. A1 - Winter, Lukas A1 - Gräßl, Andreas A1 - Santoro, Davide A1 - Özerdem, Celal A1 - Renz, Wolfgang A1 - Greiser, Andreas A1 - Niendorf, Thoralf T1 - Lessons learned from cardiac MRI at 7.0 T: LV function assessment at 3.0 T using local multi-channel transceiver coil arrays T2 - 2012 ISMRM Annual Meeting Proceedings N2 - Cardiac MR (CMR) is of proven clinical value but also an area of vigorous ongoing research since image quality is not always exclusively defined by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Recent developments of CMR at 7.0 T have been driven by pioneering explorations into novel multichannel transmit and receive coil array technology to tackle the challenges B1+-field inhomogeneities, to offset specific-absorption rate (SAR) constraints and to reduce banding artifacts in SSFP imaging. For this study, recognition of the benefits and performance of local surface Tx/Rx-array structures recently established at 7.0 T inspired migration to 3.0 T, where RF inhomogeneities and SAR limitations encountered in routine clinical CMR, though somewhat reduced versus the 7.0 T situation, remain significant. For all these reasons, this study was designed to build and examine the feasibility of a local four channel Tx/Rx cardiac coil array for anatomical and functional cardiac imaging at 3.0 T. For comparison, a homebuilt 4 channel Rx cardiac coil array exhibiting the same geometry as the Tx/Rx coil and a Rx surface coil array were used. Y1 - 2012 SN - 1545-4428 N1 - ISMRM 20th Annual Meeting & Exhibition, 5-11 May 2012, Melbourne, Australia ER - TY - JOUR A1 - Gräßl, Andreas A1 - Renz, Wolfgang A1 - Hezel, Fabian A1 - Dieringer, Matthias A. A1 - Winter, Lukas A1 - Özerdem, Celal A1 - Rieger, Jan A1 - Kellmann, Peter A1 - Santoro, Davide A1 - Lindel, Tomasz D. A1 - Frauenrath, Tobias A1 - Pfeiffer, Harald A1 - Niendorf, Thoralf T1 - Modular 32-channel transceiver coil array for cardiac MRI at 7.0T JF - Magnetic Resonance in Medicine N2 - Purpose To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. Methods The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1+ field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. Results Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm3 for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. Conclusion The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T. Y1 - 2013 U6 - https://doi.org/10.1002/mrm.24903 SN - 1522-2594 VL - 72 IS - 1 SP - 276 EP - 290 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Frauenrath, Tobias A1 - Fuchs, Katharina A1 - Dieringer, Matthias A. A1 - Özerdem, Celal A1 - Patel, Nishan A1 - Renz, Wolfgang A1 - Greiser, Andreas A1 - Elgeti, Thomas A1 - Niendorf, Thoralf T1 - Detailing the use of magnetohydrodynamic effects for synchronization of MRI with the cardiac cycle: A feasibility study JF - Journal of Magnetic Resonance Imaging N2 - Purpose: To investigate the feasibility of using magnetohydrodynamic (MHD) effects for synchronization of magnetic resonance imaging (MRI) with the cardiac cycle. Materials and Methods: The MHD effect was scrutinized using a pulsatile flow phantom at B0 = 7.0 T. MHD effects were examined in vivo in healthy volunteers (n = 10) for B0 ranging from 0.05–7.0 T. Noncontrast-enhanced MR angiography (MRA) of the carotids was performed using a gated steady-state free-precession (SSFP) imaging technique in conjunction with electrocardiogram (ECG) and MHD synchronization. Results: The MHD potential correlates with flow velocities derived from phase contrast MRI. MHD voltages depend on the orientation between B0 and the flow of a conductive fluid. An increase in the interelectrode spacing along the flow increases the MHD potential. In vivo measurement of the MHD effect provides peak voltages of 1.5 mV for surface areas close to the common carotid artery at B0 = 7.0 T. Synchronization of MRI with the cardiac cycle using MHD triggering is feasible. MHD triggered MRA of the carotids at 3.0 T showed an overall image quality and richness of anatomic detail, which is comparable to ECG-triggered MRAs. Conclusion: This feasibility study demonstrates the use of MHD effects for synchronization of MR acquisitions with the cardiac cycle. J. Magn. Reson. Imaging 2012;36:364–372. © 2012 Wiley Periodicals, Inc. Y1 - 2012 U6 - https://doi.org/10.1002/jmri.23634 SN - 1522-2586 VL - 36 IS - 2 SP - 364 EP - 372 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Martin, Conrad A1 - Frauenrath, Tobias A1 - Özerdem, Celal A1 - Renz, Wolfgang A1 - Niendorf, Thoralf T1 - Development and evaluation of a small and mobile Magneto Alert Sensor (MALSE) to support safety requirements for magnetic resonance imaging JF - European Radiology N2 - Objective The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. Methods MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. Results The consistency with which individual reed sensors would activate at the same field strength was found to be 100% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. Conclusions MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur. KW - MRI KW - MR safety KW - Magneto alert sensor KW - High field MRI KW - Uktrahigh field MRI Y1 - 2011 U6 - https://doi.org/10.1007/s00330-011-2153-z SN - 1432-1084 VL - 21 SP - 2187 EP - 2192 PB - Springer CY - Berlin, Heidelberg ER -