TY - JOUR A1 - Mansurov, Z. A. A1 - Jandosov, J. M. A1 - Kerimkulova, A. R. A1 - Azat, S. A1 - Zhubanova, A. A. A1 - Digel, Ilya A1 - Savistkaya, I. S. A1 - Akimbekov, N. S. A1 - Kistaubaeva, A. S. T1 - Nanostructured carbon materials for biomedical use JF - Eurasian chemico-technological journal : quarterly journal of the International Higher Education Academy of Sciences N2 - One of the priority trends of carbon nanotechnology is creation of nanocomposite systems. Such carbon nanostructured composites were produced using - raw materials based on the products of agricultural waste, such as grape stones, apricot stones, rice husk. These products have a - wide spectrum of application and can be obtained in large quantities. The Institute of Combustion Problems has carried out the work on synthesis of the nanostructured carbon sorbents for multiple applications including the field of biomedicine. The article presents the data on the synthesis and physico-chemical properties of carbonaceous sorbents using physicochemical methods of investigation: separation and purification of biomolecules; isolation of phytohormone - fusicoccin; adsorbent INGO-1 in the form of an adsorption column for blood detoxification, oral (entero) sorbent - INGO-2; the study of efferent and probiotic properties and sorption activity in regard to the lipopolysaccharide (LPS), new biocomposites - based on carbonized rice husk (CRH) and cellular microorganisms; the use of CRH in wound treatment. A new material for blood detoxication (INGO-1) has been obtained. Adsorption of p-cresyl sulfate and indoxyl sulfate has shown that active carbon adsorbent can remove clinically significant level of p-cresyl sulfate and indoxyl sulfate from human plasma. Enterosorbent INGO-2 possesses high adsorption activity in relation to Gram-negative bacteria and their endotoxins. INGO-2 slows down the growth of conditionally pathogenic microorganisms, without having a negative effect on bifido and lactobacteria. The use of enterosorbent INGO-2 for sorption therapy may provide a solution to a complex problem - detoxication of the digestive tract and normalization of the intestinal micro ecology. The immobilized probiotic called "Riso-lact" was registered at the Ministry of Health of the Republic of Kazakhstan as a biologically active food additive. The developed technology is patented and provides production of the medicine in the form of freeze-dried biomass immobilized in vials. Y1 - 2014 U6 - http://dx.doi.org/10.18321/ectj224 SN - 1562-3920 VL - 15 (2013) IS - 3 SP - 209 EP - 217 PB - Institute of Combustion Problems CY - Almaty ER - TY - CHAP A1 - Mansurov, Zulkhair A1 - Zhubanova, Azhar A. A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül A1 - Savitskaja, Irina S. A1 - Kozhalakova, A. A. A1 - Kistaubaeva, Aida S. T1 - The sorption of LPS toxic shock by nanoparticles on base of carbonized vegetable raw materials N2 - Immobilization of lactobacillus on high temperature carbonizated vegetable raw material (rice husk, grape stones) increases their physiological activity and the quantity of the antibacterial metabolits, that consequently lead to increase of the antagonistic activity of lactobacillus. It is implies that the use of the nanosorbents for the attachment of the probiotical microorganisms are highly perspective for decision the important problems, such as the probiotical preparations delivery to the right address and their attachment to intestines mucosa with the following detoxication of gastro-intestinal tract and the normalization of it’s microecology. Besides that, thus, the received carbonizated nanoparticles have peculiar properties – ability to sorption of LPS toxical shock and, hence, to the detoxication of LPS. KW - Kohlenstofffaser KW - Lipopolysaccharide KW - nanostrukturierte carbonisierte Pflanzenteile KW - lipopolysaccharides KW - nanostructured carbonized plant parts Y1 - 2008 ER - TY - JOUR A1 - Mansurov, Z. A1 - Digel, Ilya A1 - Biisenbaev, M. A1 - Savistkaya, I. A1 - Kistaubaeva, A. A1 - Akimbekov, N. A1 - Zhubanova, A. T1 - Bio-composite material on the basis of carbonized rice husk in biomedicine and environmental applications JF - Eurasian Chemico-Technological Journal Y1 - 2012 U6 - http://dx.doi.org/10.18321/ectj105 SN - 2522-4867 VL - 14 IS - 2 SP - 115 EP - 131 PB - Institute of Combustion Problems CY - Almaty ER - TY - CHAP A1 - Mansurov, Zulkhair A. A1 - Jandosov, Jakpar A1 - Chenchik, D. A1 - Azat, Seitkhan A1 - Savitskaya, Irina S. A1 - Kistaubaeva, Aida A1 - Akimbekov, Nuraly A1 - Digel, Ilya A1 - Zhubanova, Azhar Achmet T1 - Biocomposite Materials Based on Carbonized Rice Husk in Biomedicine and Environmental Applications T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - This chapter describes the prospects for biomedical and environmental engineering applications of heterogeneous materials based on nanostructured carbonized rice husk. Efforts in engineering enzymology are focused on the following directions: development and optimization of immobilization methods leading to novel biotechnological and biomedical applications; construction of biocomposite materials based on individual enzymes, multi-enzyme complexes and whole cells, targeted on realization of specific industrial processes. Molecular biological and biochemical studies on cell adhesion focus predominantly on identification, isolation and structural analysis of attachment-responsible biological molecules and their genetic determinants. The chapter provides a short overview of applications of the biocomposite materials based of nanostructured carbonized adsorbents. It emphasizes that further studies and better understanding of the interactions between CNS and microbial cells are necessary. The future use of living cells as biocatalysts, especially in the environmental field, needs more systematic investigations of the microbial adsorption phenomenon. Y1 - 2020 SN - 978-981-4800-27-3 U6 - http://dx.doi.org/10.1201/9780429428647-2 SP - 3 EP - 32 PB - Jenny Stanford Publishing Pte. Ltd. CY - Singapore ER -