TY - CHAP A1 - Ferrein, Alexander A1 - Schiffer, Stefan A1 - Kallweit, Stephan T1 - The ROSIN Education Concept - Fostering ROS Industrial-Related Robotics Education in Europe T2 - ROBOT 2017: Third Iberian Robotics Conference Y1 - 2018 SN - 978-3-319-70836-2 U6 - https://doi.org/10.1007/978-3-319-70836-2_31 N1 - Advances in Intelligent Systems and Computing, vol 694; (AISC, volume 694) SP - 370 EP - 381 PB - Springer CY - Cham ER - TY - CHAP A1 - Reke, Michael A1 - Peter, Daniel A1 - Schulte-Tigges, Joschua A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Walter, Thomas A1 - Matheis, Dominik T1 - A Self-Driving Car Architecture in ROS2 T2 - 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa N2 - In this paper we report on an architecture for a self-driving car that is based on ROS2. Self-driving cars have to take decisions based on their sensory input in real-time, providing high reliability with a strong demand in functional safety. In principle, self-driving cars are robots. However, typical robot software, in general, and the previous version of the Robot Operating System (ROS), in particular, does not always meet these requirements. With the successor ROS2 the situation has changed and it might be considered as a solution for automated and autonomous driving. Existing robotic software based on ROS was not ready for safety critical applications like self-driving cars. We propose an architecture for using ROS2 for a self-driving car that enables safe and reliable real-time behaviour, but keeping the advantages of ROS such as a distributed architecture and standardised message types. First experiments with an automated real passenger car at lower and higher speed-levels show that our approach seems feasible for autonomous driving under the necessary real-time conditions. Y1 - 2020 SN - 978-1-7281-4162-6 U6 - https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 N1 - 2020 International SAUPEC/RobMech/PRASA Conference, 29-31 Jan. 2020, Cape Town, South Africa SP - 1 EP - 6 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Niemüller, Tim A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - A Lua-based Behavior Engine for Controlling the Humanoid Robot Nao JF - RoboCup 2009: Robot Soccer World Cup XIII Y1 - 2010 N1 - Lecture Notes in Computer Science ; 5949 SP - 240 EP - 251 ER - TY - JOUR A1 - Ferrein, Alexander A1 - Siebel, Nils T. A1 - Steinbauer, Gerald T1 - Hybrid control for autonomous systems — Integrating learning, deliberation and reactive control JF - Robotics and Autonomous Systems Y1 - 2010 SN - 0921-8890 VL - 58 IS - 9 SP - 1037 EP - 1038 ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Reasoning with Qualitative Positional Information for Domestic Domains in the Situation Calculus JF - Journal of Intelligent & Robotic Systems Y1 - 2011 SN - 0921-0296 VL - 63 IS - 2 SP - 273 EP - 300 PB - Springer CY - Berlin ER - TY - CHAP A1 - Niemueller, Tim A1 - Neumann, Tobias A1 - Henke, Christoph A1 - Schönitz, Sebastian A1 - Reuter, Sebastian A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard T1 - International Harting Open Source Award 2016: Fawkes for the RoboCup Logistics League T2 - RoboCup 2016: RoboCup 2016: Robot World Cup XX. RoboCup 2016 Y1 - 2017 SN - 978-3-319-68792-6 U6 - https://doi.org/10.1007/978-3-319-68792-6_53 N1 - Lecture Notes in Computer Science, LNCS, Vol 9776 SP - 634 EP - 642 PB - Springer CY - Cham ER - TY - CHAP A1 - Niemueller, Tim A1 - Zwilling, Frederik A1 - Lakemeyer, Gerhard A1 - Löbach, Matthias A1 - Reuter, Sebastian A1 - Jeschke, Sabina A1 - Ferrein, Alexander T1 - Cyber-Physical System Intelligence T2 - Industrial Internet of Things N2 - Cyber-physical systems are ever more common in manufacturing industries. Increasing their autonomy has been declared an explicit goal, for example, as part of the Industry 4.0 vision. To achieve this system intelligence, principled and software-driven methods are required to analyze sensing data, make goal-directed decisions, and eventually execute and monitor chosen tasks. In this chapter, we present a number of knowledge-based approaches to these problems and case studies with in-depth evaluation results of several different implementations for groups of autonomous mobile robots performing in-house logistics in a smart factory. We focus on knowledge-based systems because besides providing expressive languages and capable reasoning techniques, they also allow for explaining how a particular sequence of actions came about, for example, in the case of a failure. KW - Smart factory KW - Industry 4.0 KW - Multi-robot systems KW - Autonomous mobile robots KW - RoboCup Y1 - 2017 SN - 978-3-319-42559-7 U6 - https://doi.org/10.1007/978-3-319-42559-7_17 N1 - Springer Series in Wireless Technology SP - 447 EP - 472 PB - Springer CY - Cham ER - TY - CHAP A1 - Krückel, Kai A1 - Nolden, Florian A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - Intuitive visual teleoperation for UGVs using free-look augmented reality displays T2 - 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA Y1 - 2015 U6 - https://doi.org/10.1109/ICRA.2015.7139809 SP - 4412 EP - 4417 ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Caesar: an intelligent domestic service robot JF - Intelligent service robotics N2 - In this paper we present CAESAR, an intelligent domestic service robot. In domestic settings for service robots complex tasks have to be accomplished. Those tasks benefit from deliberation, from robust action execution and from flexible methods for human–robot interaction that account for qualitative notions used in natural language as well as human fallibility. Our robot CAESAR deploys AI techniques on several levels of its system architecture. On the low-level side, system modules for localization or navigation make, for instance, use of path-planning methods, heuristic search, and Bayesian filters. For face recognition and human–machine interaction, random trees and well-known methods from natural language processing are deployed. For deliberation, we use the robot programming and plan language READYLOG, which was developed for the high-level control of agents and robots; it allows combining programming the behaviour using planning to find a course of action. READYLOG is a variant of the robot programming language Golog. We extended READYLOG to be able to cope with qualitative notions of space frequently used by humans, such as “near” and “far”. This facilitates human–robot interaction by bridging the gap between human natural language and the numerical values needed by the robot. Further, we use READYLOG to increase the flexible interpretation of human commands with decision-theoretic planning. We give an overview of the different methods deployed in CAESAR and show the applicability of a system equipped with these AI techniques in domestic service robotics Y1 - 2012 U6 - https://doi.org/10.1007/s11370-012-0118-y SN - 1861-2776 N1 - Special Issue on Artificial Intelligence Techniques for Robotics: Sensing, Representation and Action, Part I VL - 5 IS - 4 SP - 259 EP - 276 PB - Springer CY - Berlin ER - TY - CHAP A1 - Priede, Gareth A1 - Ferrein, Alexander T1 - Towards passive walking for the fully-actuated biped robot Nao T2 - Emerging trends in computing, informatics, systems sciences, and engineering. (Lecture notes in electrical engineering : vol. 151) N2 - Many biped robots deploy a form of gait that follows the zero moment point (ZMP) approach, that is, the robot is in a stable position at any point in time. This requires the robot to be fully actuated. While very stable, the draw-backs of this approach are a fairly slow gait and high energy consumption. An alternative approach is the so-called passive-dynamic walking, where the gait makes use of the inertia and dynamic stability of the robot. In this paper we describe our ongoing work of combining the principles of passive-dynamic walking on the fully-actuated biped robot Nao, which is also deployed for robotic soccer applications. We present a simple controller that allows the robot to stably rock sidewards, showing a closed limit-cycle. We discuss first results of superimposing a forward motion on the sidewards motion. Based on this we expect to endow the Nao with a fast, robust, and stable passive-dynamic walk on the fully-actuated Nao in the future. Y1 - 2013 SN - 978-1-4614-3557-0 ; 978-1-4614-3558-7 U6 - https://doi.org/10.1007/978-1-4614-3558-7_18 SP - 225 EP - 236 PB - Springer CY - New York, NY ER - TY - JOUR A1 - Ferrein, Alexander A1 - Schiffer, Stefan A1 - Lakemeyer, Gerhard T1 - Embedding fuzzy controllers in golog / Ferrein, Alexander ; Schiffer, Stefan ; Lakemeyer, Gerhard JF - IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009 Y1 - 2009 SN - 978-1-4244-3596-8 SP - 894 EP - 899 PB - IEEE CY - New York ER - TY - CHAP A1 - Neumann, Tobias A1 - Dülberg, Enno A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - A rotating platform for swift acquisition of dense 3D point clouds T2 - Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I Y1 - 2016 SN - 978-3-319-43505-3 (Print) SN - 978-3-319-43506-0 (Online) U6 - https://doi.org/10.1007/978-3-319-43506-0_22 N1 - Series: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) VL - 9834 SP - 257 EP - 268 PB - Springer ER - TY - JOUR A1 - Ferrein, Alexander A1 - Fritz, Christian A1 - Lakemeyer, Gerhard T1 - On-Line Decision-Theoretic Golog for Unpredictable Domains / Ferrein, Alexander ; Fritz, Christian ; Lakemeyer, Gerhard JF - KI 2004: Advances in Artificial Intelligence : 27th Annual German Conference on AI, KI 2004, Ulm, Germany, September 20-24, 2004. Proceedings Y1 - 2004 N1 - Lecture Notes in Computer Science ; 3238 SP - 322 EP - 336 PB - Springer CY - Berlin ER - TY - JOUR A1 - Ferrein, Alexander A1 - Steinbauer, Gerald A1 - McPhillips, Graeme A1 - Potgieter, Anet T1 - Establishing the RoboCup Standard League in Africa - applying for the RoboCup Standard League with a German-Austrian-South African Research Project Y1 - 2007 SP - 1 EP - 5 ER - TY - JOUR A1 - Ferrein, Alexander A1 - Fritz, Christian A1 - Lakemeyer, Gerhard T1 - Using Golog for Deliberation and Team Coordination in Robotic Soccer / Ferrein, Alexander ; Fritz, Christian ; Lakemeyer, Gerhard JF - Künstliche Intelligenz : KI. 19 (2005), H. 1 Y1 - 2005 SN - 0933-1875 SP - 24 EP - 30 ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - ERIKA—Early Robotics Introduction at Kindergarten Age JF - Multimodal Technologies Interact N2 - In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human–robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents. Y1 - 2018 U6 - https://doi.org/10.3390/mti2040064 SN - 2414-4088 VL - 2 IS - 4 PB - MDPI CY - Basel ER - TY - CHAP A1 - Hofmann, Till A1 - Mataré, Victor A1 - Neumann, Tobias A1 - Schönitz, Sebastian A1 - Henke, Christoph A1 - Limpert, Nicolas A1 - Niemueller, Tim A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard T1 - Enhancing Software and Hardware Reliability for a Successful Participation in the RoboCup Logistics League 2017 Y1 - 2018 SN - 978-3-030-00308-1 U6 - https://doi.org/10.1007/978-3-030-00308-1_40 N1 - Lecture Notes in Computer Science, vol 11175 SP - 486 EP - 497 PB - Springer CY - Cham ER - TY - JOUR A1 - Niemüller, Tim A1 - Ferrein, Alexander A1 - Beck, Daniel A1 - Lakemeyer, Gerhard T1 - Design Principles of the Component-Based Robot Software Framework Fawkes JF - Simulation, Modeling, and Programming for Autonomous Robots Y1 - 2010 N1 - Lecture Notes in Computer Science ; 6472 ; Second International Conference, SIMPAR 2010, Darmstadt, Germany, November 15-18, 2010. Proceedings SP - 300 EP - 311 ER - TY - JOUR A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - On the Way to High-Level Programming for Resource-Limited Embedded Systems with Golog JF - Simulation, Modeling, and Programming for Autonomous Robots Y1 - 2010 N1 - Lecture Notes in Computer Science ; 6472 ; Second International Conference, SIMPAR 2010, Darmstadt, Germany, November 15-18, 2010. Proceedings SP - 229 EP - 240 ER - TY - JOUR A1 - Ferrein, Alexander T1 - Robot controllers for highly dynamic environments with real-time constraints JF - Künstliche Intelligenz : KI. 24 (2010), H. 2 Y1 - 2010 SN - 1610-1987 SP - 175 EP - 178 ER -