TY - CHAP A1 - Jablonski, Melanie A1 - Koch, Claudia A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier T2 - MDPI Proceeding Y1 - 2017 U6 - https://doi.org/10.3390/proceedings1040505 N1 - Eurosensors 2017 Conference, Paris, France, 3–6 September 2017 VL - 1 IS - 4 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Nanomaterial-Modified Capacitive Field-Effect Biosensors T2 - Springer Series on Chemical Sensors and Biosensors (Methods and Applications) N2 - The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte–insulator–semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing. KW - Biomolecular logic gate KW - DNA KW - Enzyme biosensor KW - Field-effect sensor KW - Gold nanoparticle Y1 - 2017 U6 - https://doi.org/10.1007/5346_2017_2 SP - 1 EP - 25 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Katz, Evgeny A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics JF - Analytical and Bioanalytical Chemistry N2 - The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a “filter” system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Y1 - 2017 U6 - https://doi.org/10.1007/s00216-016-0079-7 SN - 1618-2650 VL - 409 SP - 81 EP - 94 PB - Springer CY - Berlin ER -