TY - JOUR A1 - Huck, Christina A1 - Schiffels, Johannes A1 - Herrera, Cony N. A1 - Schelden, Maximilian A1 - Selmer, Thorsten A1 - Poghossian, Arshak A1 - Baumann, Marcus A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor JF - Physica Status Solidi (A) N2 - Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the “welfare” of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis–Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200900 SN - 0031-8965 VL - 210 IS - 5 SP - 926 EP - 931 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schusser, Sebastian A1 - Krischer, Maximillian A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors JF - Analytical Chemistry N2 - Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte–insulator–semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(d,l-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers. Y1 - 2015 U6 - http://dx.doi.org/10.1021/acs.analchem.5b00617 SN - 1520-6882 VL - 87 IS - 13 SP - 6607 EP - 6613 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Kerroumi, Iman A1 - Schusser, Sebastian A1 - Bäcker, Matthias A1 - Zander, Willi A1 - Schubert, Jürgen A1 - Buniatyan, Vahe V. A1 - Martirosyan, Norayr W. A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multiparameter sensor chip with Barium Strontium Titanate as multipurpose material JF - Electroanalysis N2 - It is well known that biochemical and biotechnological processes are strongly dependent and affected by a variety of physico-chemical parameters such as pH value, temperature, pressure and electrolyte conductivity. Therefore, these quantities have to be monitored or controlled in order to guarantee a stable process operation, optimization and high yield. In this work, a sensor chip for the multiparameter detection of three physico-chemical parameters such as electrolyte conductivity, pH and temperature is realized using barium strontium titanate (BST) as multipurpose material. The chip integrates a capacitively coupled four-electrode electrolyte-conductivity sensor, a capacitive field-effect pH sensor and a thin-film Pt-temperature sensor. Due to the multifunctional properties of BST, it is utilized as final outermost coating layer of the processed sensor chip and serves as passivation and protection layer as well as pH-sensitive transducer material at the same time. The results of testing of the individual sensors of the developed multiparameter sensor chip are presented. In addition, a quasi-simultaneous multiparameter characterization of the sensor chip in buffer solutions with different pH value and electrolyte conductivity is performed. To study the sensor behavior and the suitability of BST as multifunctional material under harsh environmental conditions, the sensor chip was exemplarily tested in a biogas digestate. Y1 - 2014 U6 - http://dx.doi.org/10.1002/elan.201400076 SN - 1521-4109 (E-Journal); 1040-0397 (Print) VL - 26 IS - 5 SP - 980 EP - 987 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Karschuck, Tobias A1 - Schmidt, Stefan A1 - Achtsnicht, Stefan A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multiplexing system for automated characterization of a capacitive field-effect sensor array JF - Physica Status Solidi A N2 - In comparison to single-analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi-simultaneous characterization of multiple (up to 16) capacitive field-effect sensors by the capacitive–voltage (C–V) and the constant-capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user-defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label-free detection of ligand-stabilized, charged gold nanoparticles. KW - Capacitive field-effect sensor KW - Gold nanoparticles KW - Label-free detection KW - Multicell KW - Multiplexing Y1 - 2023 U6 - http://dx.doi.org/10.1002/pssa.202300265 SN - 1862-6300 (Print) SN - 1862-6319 (Online) N1 - Corresponding author: Michael Josef Schöning VL - 220 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Razavi, Arash A1 - Besmehn, Astrid A1 - Bijnens, Nathalie A1 - Williams, Oliver A. A1 - Haenen, Ken A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Penicillin detection with nanocrystalline-diamond field-effect sensor JF - physica status solidi (a). 205 (2008), H. 9 Y1 - 2008 SN - 1862-6319 N1 - Special Issue: Hasselt Diamond Workshop 2008 - SBDD XIII SP - 2141 EP - 2145 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Christiaens, P. A1 - Williams, O. A. A1 - Haenen, K. A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors JF - Journal of Contemporary Physics. 43 (2008), H. 2 Y1 - 2008 SN - 1934-9378 N1 - Armenian Academy of Sciences SP - 77 EP - 81 ER - TY - CHAP A1 - Schusser, Sebastian A1 - Bäcker, Matthias A1 - Leinhos, Marcel A1 - Krischer, M. A1 - Wenzel, L. A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Sensorkonzept zur in vitro Echtzeitmessung des Degradationsverhaltens von biodegradierbaren Biopolymeren T2 - 11. Dresdner Sensor-Symposium : 9.-11.12.2013 Y1 - 2013 SN - 978-3-9813484-5-3 SP - 174 EP - 177 ER - TY - JOUR A1 - Gun, Jenny A1 - Gutkin, Vitaly A1 - Lev, Ovadia A1 - Boyen, Hans-Gerd A1 - Saitner, Marc A1 - Wagner, Patrick A1 - Olieslaeger, Marc D´ A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices JF - Journal of Physical Chemistry C. 115 (2011), H. 11 Y1 - 2011 SN - 1932-7455 SP - 4439 EP - 4445 PB - American Cemical Society CY - Washington, DC ER -