TY - CHAP A1 - O\'Heras, Carlos A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - Nanostructured carbon-based column for LPS/protein adsorption : [abstract] N2 - The absence of a general method for endotoxin removal from liquid interfaces gives an opportunity to find new methods and materials to overcome this gap. Activated nanostructured carbon is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study is to find the adsorption rates for a carboneous material produced at different temperatures, as well as to reveal possible differences between the performance of the material for each of the adsorbates used during the study (hemoglobin, serum albumin and lipopolysaccharide, LPS). KW - Kohlenstofffaser KW - Adsorption KW - Lipopolysaccharide KW - aktivierte nanostrukturierte Kohlenstofffaser KW - lipopolysaccharides KW - activated nanostructured carbon Y1 - 2009 ER - TY - CHAP A1 - Frotscher, Ralf A1 - Goßmann, Matthias A1 - Raatschen, Hans-Jürgen A1 - Temiz Artmann, Aysegül A1 - Staat, Manfred T1 - Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM T2 - Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45) N2 - We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments. Y1 - 2015 SN - 978-3-319-02534-6 ; 978-3-319-02535-3 SP - 187 EP - 212 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Demirci, Taylan A1 - Gierkowski, Jessica R. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract] N2 - In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension. KW - Endothelzelle KW - Sepsis KW - kontraktile Spannung KW - rhAPC KW - contractile tension KW - rhAPC KW - celldrum technology Y1 - 2010 ER - TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - The emperor's new body : seeking for a blueprint of limb regeneration in humans JF - Stem cell engineering : principles and applications / Gerhard M. Artmann ... eds. Y1 - 2011 SN - 978-3-642-11864-7 SP - 3 EP - 37 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Digel, Ilya A1 - Demirci, Taylan A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. T1 - Free Radical Nature of the Bactericidal Effect of Plasma-Generated Cluster Ions (PCIs) JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 982 EP - 983 ER - TY - JOUR A1 - Frotscher, Ralf A1 - Muanghong, Danita A1 - Dursun, Gözde A1 - Goßmann, Matthias A1 - Temiz Artmann, Aysegül A1 - Staat, Manfred T1 - Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue JF - Journal of Biomechanics N2 - We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures. KW - hiPS cardiomyocytes KW - Homogenization KW - Hodgkin–Huxley models KW - Frequency adaption KW - Electromechanical modeling KW - Drug simulation KW - Computational biomechanics KW - Cardiac tissue Y1 - 2016 U6 - https://doi.org/10.1016/j.jbiomech.2016.01.039 SN - 0021-9290 (Print) SN - 1873-2380 (Online) VL - 49 IS - 12 SP - 2428 EP - 2435 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Linder, Peter A1 - Kayser, Peter A1 - Digel, Ilya T1 - NMR in vitro effects on proliferation, apoptosis, and viability of human chondrocytes and osteoblasts JF - Methods and findings in Experimental and Clinical Pharmacology. 27 (2005), H. 6 Y1 - 2005 SN - 0379-0355 SP - 391 EP - 394 ER -