TY - CHAP A1 - Dachwald, Bernd T1 - Global optimization of low-thrust space missions using evolutionary neurocontrol T2 - Proceedings of the international workshop on global optimization N2 - Low-thrust space propulsion systems enable flexible high-energy deep space missions, but the design and optimization of the interplanetary transfer trajectory is usually difficult. It involves much experience and expert knowledge because the convergence behavior of traditional local trajectory optimization methods depends strongly on an adequate initial guess. Within this extended abstract, evolutionary neurocontrol, a method that fuses artificial neural networks and evolutionary algorithms, is proposed as a smart global method for low-thrust trajectory optimization. It does not require an initial guess. The implementation of evolutionary neurocontrol is detailed and its performance is shown for an exemplary mission. KW - Evolutionary Neurocontrol KW - Spacecraft Trajectory Optimization KW - Low-Thrust Propulsion Y1 - 2005 SP - 85 EP - 90 ER - TY - CHAP A1 - Schartner, Karl-Heinz A1 - Loeb, H. W. A1 - Dachwald, Bernd A1 - Ohndorf, Andreas T1 - Perspectives of electric propulsion for outer planetary and deep space missions T2 - European Planetary Science Congress 2009 N2 - Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low–thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3]. Y1 - 2009 N1 - European Planetary Science Congress 2009, 13-18 September, Potsdam, Germany SP - 416 EP - 416 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Riemann, Johannes A1 - Spröwitz, Tom A1 - Tardivel, Simon T1 - Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization T2 - 5th IAA Planetary Defense Conference KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - asteroid sample return Y1 - 2017 N1 - 5th IAA Planetary Defense Conference – PDC 2017 15-19 May 2017, Tokyo, Japan ER - TY - CHAP A1 - Dachwald, Bernd T1 - Solar sail performance requirements for missions to the outer solar system and beyond T2 - 55th International Astronautical Congress 2004 N2 - Solar sails enable missions to the outer solar system and beyond, although the solar radiation pressure decreases with the square of solar distance. For such missions, the solar sail may gain a large amount of energy by first making one or more close approaches to the sun. Within this paper, optimal trajectories for solar sail missions to the outer planets and into near interstellar space (200 AU) are presented. Thereby, it is shown that even near/medium-term solar sails with relatively moderate performance allow reasonable transfer times to the boundaries of the solar system. Y1 - 2004 U6 - https://doi.org/10.2514/6.IAC-04-S.P.11 N1 - 55th International Astronautical Congress 2004 - Vancouver, Canada SP - 1 EP - 9 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Biele, Jens A1 - Dachwald, Bernd A1 - Grimm, Christian A1 - Lange, Caroline A1 - Ulamec, Stephan T1 - Small spacecraft for small solar system body science, planetary defence and applications T2 - IEEE Aerospace Conference 2016 N2 - Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a ‘pure’ science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA’s ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact & Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL’s DART (Double Asteroid Redirection Test) and ESA’s AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART. Y1 - 2016 SP - 1 EP - 20 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Cordero, Frederico A1 - Dachwald, Bernd A1 - Koncz, Alexander A1 - Krause, Christian A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Quantius, Dominik A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seefeldt, Patric A1 - Tóth, Norbert A1 - Wejmo, Elisabet T1 - From Sail to Soil – Getting Sailcraft Out of the Harbour on a Visit to One of Earth’s Nearest Neighbours T2 - 4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy Y1 - 2015 ER - TY - CHAP A1 - Pirovano, Laura A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit T2 - 25th International Symposium on Space Flight Dynamics ISSFD N2 - Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail KW - Solar sail KW - Gossamer structures KW - Attitude dynamics KW - Orbital dynamics Y1 - 2015 N1 - 25th International Symposium on Space Flight Dynamics ISSFD October 19 – 23, 2015, Munich, Germany https://issfd.org/2015/ SP - 1 EP - 15 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz T1 - A comparison of SEP and NEP for a main belt asteroid sample return mission T2 - 7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007 N2 - Innovative interplanetary deep space missions, like a main belt asteroid sample return mission, require ever larger velocity increments (∆V s) and thus ever more demanding propulsion capabilities. Providing much larger exhaust velocities than chemical high-thrust systems, electric low-thrust space-propulsion systems can significantly enhance or even enable such high-energy missions. In 1995, a European-Russian Joint Study Group (JSG) presented a study report on “Advanced Interplanetary Missions Using Nuclear-Electric Propulsion” (NEP). One of the investigated reference missions was a sample return (SR) from the main belt asteroid (19) Fortuna. The envisaged nuclear power plant, Topaz-25, however, could not be realized and also the worldwide developments in space reactor hardware stalled. In this paper, we investigate, whether such a mission is also feasible using a solar electric propulsion (SEP) system and compare our SEP results to corresponding NEP results. Y1 - 2007 SP - 1 EP - 10 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Head-on impact deflection of NEAs: a case study for 99942 Apophis T2 - Planetary Defense Conference 2007 N2 - Near-Earth asteroid (NEA) 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several less than 1 km-sized gravitational keyholes during its 2029-encounter. A pre-2029 kinetic impact is a very favorable option to nudge the asteroid out of a keyhole. The highest impact velocity and thus deflection can be achieved from a trajectory that is retrograde to Apophis orbit. With a chemical or electric propulsion system, however, many gravity assists and thus a long time is required to achieve this. We show in this paper that the solar sail might be the better propulsion system for such a mission: a solar sail Kinetic Energy Impactor (KEI) spacecraft could impact Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages. The spacecraft consists of a 160 m × 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. For a launch in 2020, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, the solar sail KEI concept is still feasible to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value Y1 - 2007 N1 - Planetary Defense Conference 2007, Wahington D.C., USA, 05-08 March 2007 SP - 1 EP - 12 ER -