TY - CHAP A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Häusler, Bernd T1 - Performance requirements for near-term interplanetary solar sailcraft missions T2 - 6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century N2 - Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions. Y1 - 2002 N1 - 6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century, Versailles, France, 14-16 May 2002 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Mikucki, Jill A. A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Xu, Changsheng T1 - IceMole - a maneuverable probe for clean in-situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems : extended abstract / SCAR Open Science Conference 2012, Session 29: Advancing Clean Technologies for Exploration of Glacial Aquatic Ecosystems N2 - The ”IceMole“ is a novel maneuverable subsurface ice probe for clean in-situ analysis and sampling of subsurface ice and subglacial water/brine. It is developed and build at FH Aachen University of Applied Sciences’ Astronautical Laboratory. A first prototype was successfully tested on the Swiss Morteratsch glacier in 2010. Clean sampling is achieved with a hollow ice screw (as it is used in mountaineering) at the tip of the probe. Maneuverability is achieved with a differentially heated melting head. Funded by the German Space Agency (DLR), a consortium led by FH Aachen currently develops a much more advanced IceMole probe, which includes a sophisticated system for obstacle avoidance, target detection, and navigation in the ice. We intend to use this probe for taking clean samples of subglacial brine at the Blood Falls (McMurdo Dry Valleys, East Antarctica) for chemical and microbiological analysis. In our conference contribution, we 1) describe the IceMole design, 2) report the results of the field tests of the first prototype on the Morteratsch glacier, 3) discuss the probe’s potential for the clean in-situ analysis and sampling of subsurface ice and subglacial liquids, and 4) outline the way ahead in the development of this technology. KW - Eisschicht KW - Sonde KW - subsurface ice KW - subglacial aquatic ecosystems Y1 - 2012 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert A1 - Digel, Ilya A1 - Artmann, Gerhard T1 - Development and testing of a subsurface probe for detection of life in deep ice : [abstract] N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). KW - Eisschicht KW - Sonde KW - subsurface probe KW - subsurface ice research Y1 - 2011 ER - TY - CHAP A1 - Digel, Ilya A1 - Leimena, W. A1 - Dachwald, Bernd A1 - Linder, Peter A1 - Porst, Dariusz A1 - Kayser, Peter A1 - Funke, O. A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - In-situ biological decontamination of an ice melting probe : [abstract] N2 - The objective of our study was to investigate the efficacy of different in-situ decontamination protocols in the conditions of thermo-mechanical ice-melting. KW - Sonde KW - Dekontamination KW - Wasserstoffperoxid KW - Natriumhypochlorit Y1 - 2010 ER - TY - CHAP A1 - Digel, Ilya A1 - Dachwald, Bernd A1 - Artmann, Gerhard A1 - Linder, Peter A1 - Funke, O. T1 - A concept of a probe for particle analysis and life detection in icy environments N2 - A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa’s ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live. KW - Sonde KW - Eisschicht KW - Autofluoreszenzverfahren KW - Lichtstreuungsbasierte Instrumente KW - autofluorescence-based detection system KW - light scattering analysis Y1 - 2009 ER - TY - CHAP A1 - Konstantinidis, K. A1 - Dachwald, Bernd A1 - Ohndorf, A. A1 - Dykta, P. A1 - Voigt, K. A1 - Förstner, R. T1 - Enceladus explorer (ENEX): A lander mission to probe subglacial water pockets on Saturn's moon enceladus for life T2 - 64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2) Y1 - 2013 SN - 978-1-62993-909-4 SP - 1340 EP - 1350 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Dachwald, Bernd A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Konstantinidis, K. A1 - Forstner, R. T1 - Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice T2 - 63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3) Y1 - 2012 SN - 978-1-62276-979-7 SP - 1756 EP - 1766 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Peloni, Alessandro A1 - Ceriotti, Matteo A1 - Dachwald, Bernd T1 - Solar-Sailing Trajectory Design for Close-up NEA Observations Mission T2 - 4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy Y1 - 2015 N1 - IAA-PDC-15-P-19 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Cordero, Frederico A1 - Dachwald, Bernd A1 - Koncz, Alexander A1 - Krause, Christian A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Quantius, Dominik A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seefeldt, Patric A1 - Tóth, Norbert A1 - Wejmo, Elisabet T1 - From Sail to Soil – Getting Sailcraft Out of the Harbour on a Visit to One of Earth’s Nearest Neighbours T2 - 4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy Y1 - 2015 ER - TY - CHAP A1 - Pirovano, Laura A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Attitude and Orbital Dynamics Modeling for an Uncontrolled Solar-Sail Experiment in Low-Earth Orbit T2 - 25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany Y1 - 2015 ER - TY - CHAP A1 - Peloni, A. A1 - Ceriotti, M. A1 - Dachwald, Bernd T1 - Preliminary trajectory design of a multiple NEO rendezvous mission through solar sailing T2 - Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014 Y1 - 2015 SN - 978-1-63439-986-9 SP - 5352 EP - 5366 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Konstantinidis, K. A1 - Kowalski, Julia A1 - Martinez, C. F. A1 - Dachwald, Bernd A1 - Ewerhart, D. A1 - Förstner, R. T1 - Some necessary technologies for in-situ astrobiology on enceladus T2 - Proceedings of the International Astronautical Congress Y1 - 2015 SN - 978-151081893-4 N1 - 6th International Astronautical Congress 2015: Space - The Gateway for Mankind's Future, IAC 2015; Jerusalem; Israel; 12 October 2015 through 16 October 2015 SP - 1354 EP - 1372 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Meß, Jan-Gerd A1 - Biele, Jens A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Spietz, Peter A1 - Grimm, Christian D. A1 - Spröwitz, Tom A1 - Lange, Caroline A1 - Ulamec, Stephan T1 - Small spacecraft in small solar system body applications T2 - IEEE Aerospace Conference 2017, Big Sky, Montana, USA Y1 - 2017 SN - 978-1-5090-1613-6 U6 - http://dx.doi.org/10.1109/AERO.2017.7943626 SP - 1 EP - 20 ER - TY - CHAP A1 - Baader, Fabian A1 - Reiswich, M. A1 - Bartsch, M. A1 - Keller, D. A1 - Tiede, E. A1 - Keck, G. A1 - Demircian, A. A1 - Friedrich, M. A1 - Dachwald, Bernd A1 - Schüller, K. A1 - Lehmann, R. A1 - Chojetzki, R. A1 - Durand, C. A1 - Rapp, L. A1 - Kowalski, Julia A1 - Förstner, R. T1 - VIPER - Student research on extraterrestrical ice penetration technology T2 - Proceedings of the 2nd Symposium on Space Educational Activities N2 - Recent analysis of scientific data from Cassini and earth-based observations gave evidence for a global ocean under a surrounding solid ice shell on Saturn's moon Enceladus. Images of Enceladus' South Pole showed several fissures in the ice shell with plumes constantly exhausting frozen water particles, building up the E-Ring, one of the outer rings of Saturn. In this southern region of Enceladus, the ice shell is considered to be as thin as 2 km, about an order of magnitude thinner than on the rest of the moon. Under the ice shell, there is a global ocean consisting of liquid water. Scientists are discussing different approaches the possibilities of taking samples of water, i.e. by melting through the ice using a melting probe. FH Aachen UAS developed a prototype of maneuverable melting probe which can navigate through the ice that has already been tested successfully in a terrestrial environment. This means no atmosphere and or ambient pressure, low ice temperatures of around 100 to 150K (near the South Pole) and a very low gravity of 0,114 m/s^2 or 1100 μg. Two of these influencing measures are about to be investigated at FH Aachen UAS in 2017, low ice temperature and low ambient pressure below the triple point of water. Low gravity cannot be easily simulated inside a large experiment chamber, though. Numerical simulations of the melting process at RWTH Aachen however are showing a gravity dependence of melting behavior. Considering this aspect, VIPER provides a link between large-scale experimental simulations at FH Aachen UAS and numerical simulations at RWTH Aachen. To analyze the melting process, about 90 seconds of experiment time in reduced gravity and low ambient pressure is provided by the REXUS rocket. In this time frame, the melting speed and contact force between ice and probes are measured, as well as heating power and a two-dimensional array of ice temperatures. Additionally, visual and infrared cameras are used to observe the melting process. Y1 - 2018 SP - 1 EP - 6 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Borchers, Kai A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Lange, Caroline A1 - Maiwald, Volker A1 - Mikulz, Eugen A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Sasaki, Kaname A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Toth, Norbert A1 - Wejmo, Elisabet A1 - Biele, Jens A1 - Krause, Christian A1 - Cerotti, Matteo A1 - Peloni, Alessandro A1 - Dachwald, Bernd T1 - Small Spacecraft Solar Sailing for Small Solar System Body Multiple Rendezvous and Landing T2 - 2018 IEEE Aerospace Conference : 3-10 March 2018 Y1 - 2018 SN - 978-1-5386-2014-4 ER - TY - CHAP A1 - Waldmann, Christoph A1 - Vera, Jean-Pierre de A1 - Dachwald, Bernd A1 - Strasdeit, Henry A1 - Sohl, Frank A1 - Hanff, Hendrik A1 - Kowalski, Julia A1 - Heinen, Dirk A1 - Macht, Sabine A1 - Bestmann, Ulf A1 - Meckel, Sebastian A1 - Hildebrandt, Marc A1 - Funke, Oliver A1 - Gehrt, Jan-Jöran T1 - Search for life in ice-covered oceans and lakes beyond Earth T2 - 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761 N2 - The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent. KW - Planetary exploration KW - Jupiter KW - ice moons KW - underwater vehicle KW - Antarctica Y1 - 2018 U6 - http://dx.doi.org/10.1109/AUV.2018.8729761 ER - TY - CHAP A1 - Baader, Fabian A1 - Keller, Denis A1 - Lehmann, Raphael A1 - Gerber, Lukas A1 - Reiswich, Martin A1 - Dachwald, Bernd A1 - Förstner, Roger T1 - Operating melting probes for ice penetration under sublimation conditions and in reduced gravity on a sounding rocket T2 - Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research Y1 - 2019 SN - 0379-6566 N1 - 24th PAC Symposium 2019 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Chand, Suditi A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Heiligers, Jeannette A1 - Herčík, David A1 - Hérique, Alain A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin A1 - Meß, Jan-Gerd A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Vergaaij, Merel A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wiedemann, Carsten A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Flights are ten a sail – Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration T2 - 70th International Astronautical Congress (IAC) KW - system engineering KW - small solar system body characterisation KW - small spacecraft solar sail KW - small spacecraft asteroid lander KW - responsive space Y1 - 2019 SN - 9781713814856 N1 - 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019 SP - 1 EP - 7 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Hercik, D. A1 - Herique, A. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin R. A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Responsive integrated small spacecraft solar sail and payload design concepts and missions T2 - Conference: 5th International Symposium on Solar Sailing (ISSS 2019) N2 - Asteroid mining has the potential to greatly reduce the cost of in-space manufacturing, production of propellant for space transportation and consumables for crewed spacecraft, compared to launching the required resources from Earth’s deep gravity well. This paper discusses the top-level mission architecture and trajectory design for these resource-return missions, comparing high-thrust trajectories with continuous low-thrust solar-sail trajectories. This work focuses on maximizing the economic Net Present Value, which takes the time-cost of finance into account and therefore balances the returned resource mass and mission duration. The different propulsion methods will then be compared in terms of maximum economic return, sets of attainable target asteroids, and mission flexibility. This paper provides one more step towards making commercial asteroid mining an economically viable reality by integrating trajectory design, propulsion technology and economic modelling. Y1 - 2019 N1 - Conference: 5th International Symposium on Solar Sailing (ISSS 2019)At: Aachen, Germany ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Herčík, David A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D A1 - Koncz, Alexander A1 - Krause, Christian A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Maiwald, Volker A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tardivel, Simon A1 - Tóth, Norbert A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and ‘Now-Term ‘technologies T2 - 69 th International Astronautical Congress (IAC) N2 - Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, ”If you’ve seen one asteroid, you’ve seen one asteroid”, meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups‘ studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population. KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - small spacecraft Y1 - 2018 N1 - 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. https://www.bho-legal.com/1-5-october-2018-69th-international-astronautical-congress-2018-in-bremen-germany/ SP - 1 EP - 18 ER -