TY - JOUR A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Kubalski, Thomas A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Meyer, Udo ED - Voss, Michael T1 - Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk (Teil 2) T1 - Design of reinforced concrete enclosures infilled with clay block masonry (Part 2) JF - Ziegelindustrie international : ZI = Brick and tile industry international N2 - Im Rahmen des europäischen Verbundprojekts INSYSME wurden von den deutschen Partnern die Systeme IMES und INODIS zur Verbesserung des seismischen Verhaltens von ausgefachten Stahlbetonrahmen entwickelt. Ziel beider Systeme ist es, Stahlbetonrahmen und Ausfachung zu entkoppeln, anstatt die Tragfähigkeit durch aufwendige und kostspielige zusätzliche Bewehrungseinlagen zu erhöhen. Erste Ergebnisse des Systems IMES für Belastungen in und senkrecht zu der Wandebene werden vorgestellt. N2 - Within the scope of the joint European project INSYSME, the German partners developed two systems - IMES and INODIS - for improving the seismic behaviour of masonry infilled reinforced concrete frames. The purpose of both systems is to decouple frame and infill instead of working to improve their load-bearing capacity by means of elaborate, expensive, supplementary reinforcing elements. Initial findings for the IMES system with regard to the loads acting in-plane and perpendicular to the wall plane (out-of-plane) are presented. Y1 - 2018 SN - 0341-0552 IS - 6 SP - 24 EP - 43 PB - Bauverlag BV GmbH CY - Gütersloh ER - TY - CHAP A1 - Churilov, Sergej A1 - Dumova-Jovanoska, Elena A1 - Butenweg, Christoph ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) N2 - A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia. Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Butenweg, Christoph A1 - Norda, Hannah ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Nonlinear analysis of masonry structures according to Eurocode 8 T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration control of slender structures by semi-active tuned liquid column dampers T2 - Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07 Y1 - 2013 N1 - http://www.emi2013.northwestern.edu/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=213&type=1 Seite kann nicht gefunden werden. ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper T2 - 6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain Y1 - 2014 ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - https://doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Giresini, Linda A1 - Sassu, Mauro A1 - Butenweg, Christoph A1 - Alecci, Valerio A1 - De Stefano, Mario T1 - Vault macro-element with equivalent trusses in global seismic analyses JF - Earthquakes and Structures N2 - This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports. KW - vault KW - macro-element KW - equivalent stiffness KW - truss KW - churches Y1 - 2017 U6 - https://doi.org/10.12989/eas.2017.12.4.409 SN - 2092-7614 (Print) SN - 2092-7622 (Online) VL - 12 IS - 4 SP - 409 EP - 423 PB - Techno-Press CY - Taejŏn ER - TY - CHAP A1 - Lu, S. A1 - Beyer, K. A1 - Bosiljkov, V. A1 - Butenweg, Christoph A1 - D’Ayala, D. A1 - Degee, H. A1 - Gams, M. A1 - Klouda, J. A1 - Lagomarsino, S. A1 - Penna, A. A1 - Mojsilovic, N. A1 - da Porto, F. A1 - Sorrentino, L. A1 - Vintzileou, E. ED - Modena, Claudio ED - da Porto, F. ED - Valluzzi, M.R. T1 - Next generation of Eurocode 8, masonry chapter T2 - Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016 N2 - This paper describes the procedure on the evaluation of the masonry chapter for the next generation of Eurocode 8, the European Standard for earthquake-resistant design. In CEN, TC 250/SC8, working group WG 1 has been established to support the subcommittee on the topic of masonry on both design of new structures (EN1998-1) and assessment of existing structures (EN1998-3). The aim is to elaborate suggestions for amendments which fit the current state of the art in masonry and earthquake-resistant design. Focus will be on modelling, simplified methods, linear-analysis (q-values, overstrength-values), nonlinear procedures, out-of-plane design as well as on clearer definition of limit states. Beside these, topics related to general material properties, reinforced masonry, confined masonry, mixed structures and non-structural infills will be covered too. This paper presents the preliminary work and results up to the submission date. Y1 - 2016 SN - 978-1-138-02999-6 (Print) SN - 9781315374963 (E-Book) SP - 695 EP - 700 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Butenweg, Christoph A1 - Heuer, R. A1 - Wenk, T. T1 - Erdbebeningenieurwesen und Baudynamik T1 - Earthquake engineering and structural dynamics (editorial) JF - Bauingenieur Y1 - 2015 SN - 00056650 VL - 90 IS - 10 SP - S1 PB - VDI Fachmedien CY - Düsseldorf ER - TY - JOUR A1 - Becker, Meike A1 - Frauenrath, Tobias A1 - Hezel, Fabian A1 - Krombach, Gabriele A. A1 - Kremer, Ute A1 - Koppers, Benedikt A1 - Butenweg, Christoph A1 - Goemmel, Andreas A1 - Utting, Jane F. A1 - Schulz-Menger, Jeanette A1 - Niendorf, Thoralf T1 - Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T JF - European Radiology N2 - Objective: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n=14). Methods: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT’s performance with vector ECG (VCG). Endocardial border sharpness (EBS) was examined paralleled by quantitative LV function assessment. Results: Unlike VCG, ACT provided signal traces free of interference from EMF or MHD effects. In the case of correct Rwave recognition, VCG-triggered 2D CINE SSFP was immune to cardiac motion effects—even at 3.0 T. However, VCG-triggered 2D SSFP CINE imaging was prone to cardiac motion and EBS degradation if R-wave misregistration occurred. ACT-triggered acquisitions yielded LV parameters (end-diastolic volume (EDV), endsystolic volume (ESV), stroke volume (SV), ejection fraction (EF) and left ventricular mass (LVM)) comparable with those derived fromVCG-triggered acquisitions (1.5 T: ESVVCG=(56± 17) ml, EDVVCG=(151±32)ml, LVMVCG=(97±27) g, SVVCG=(94± 19)ml, EFVCG=(63±5)% cf. ESVACT= (56±18) ml, EDVACT=(147±36) ml, LVMACT=(102±29) g, SVACT=(91± 22) ml, EFACT=(62±6)%; 3.0 T: ESVVCG=(55±21) ml, EDVVCG=(151±32) ml, LVMVCG=(101±27) g, SVVCG=(96±15) ml, EFVCG=(65±7)% cf. ESVACT=(54±20) ml, EDVACT=(146±35) ml, LVMACT= (101±30) g, SVACT=(92±17) ml, EFACT=(64±6)%). Conclusions: ACT’s intrinsic insensitivity to interference from electromagnetic fields renders KW - Magnetic resonance imaging (MRI) KW - MR-stethoscope KW - Magnetic field strength KW - Left ventriular function KW - Cardiovascular MRI Y1 - 2010 U6 - https://doi.org/10.1007/s00330-009-1676-z SN - 1432-1084 (Onlineausgabe) SN - 0938-7994 (Druckausgabe) VL - 20 SP - 1344 EP - 1355 PB - Springer CY - Berlin ER -