TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - CHAP A1 - Finger, Felix A1 - de Vries, Reynard A1 - Vos, Roelof A1 - Braun, Carsten A1 - Bil, Cees T1 - A comparison of hybrid-electric aircraft sizing methods T2 - AIAA Scitech 2020 Forum N2 - The number of case studies focusing on hybrid-electric aircraft is steadily increasing, since these configurations are thought to lead to lower operating costs and environmental impact than traditional aircraft. However, due to the lack of reference data of actual hybrid-electric aircraft, in most cases, the design tools and results are difficult to validate. In this paper, two independently developed approaches for hybrid-electric conceptual aircraft design are compared. An existing 19-seat commuter aircraft is selected as the conventional baseline, and both design tools are used to size that aircraft. The aircraft is then re-sized under consideration of hybrid-electric propulsion technology. This is performed for parallel, serial, and fully-electric powertrain architectures. Finally, sensitivity studies are conducted to assess the validity of the basic assumptions and approaches regarding the design of hybrid-electric aircraft. Both methods are found to predict the maximum take-off mass (MTOM) of the reference aircraft with less than 4% error. The MTOM and payload-range energy efficiency of various (hybrid-) electric configurations are predicted with a maximum difference of approximately 2% and 5%, respectively. The results of this study confirm a correct formulation and implementation of the two design methods, and the data obtained can be used by researchers to benchmark and validate their design tools. Y1 - 2020 U6 - https://doi.org/10.2514/6.2020-1006 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft T2 - 67. Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 ER - TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bill, C. T1 - On the flight performance impact of landing gear drag reduction methods for unmanned air vehicles JF - Deutscher Luft- und Raumfahrtkongress 2018 N2 - The flight performance impact of three different landing gear configurations on a small, fixed-wing UAV is analyzed with a combination of RANS CFD calculations and an incremental flight performance algorithm. A standard fixed landing gear configuration is taken as a baseline, while the influence of retracting the landing gear or applying streamlined fairings is investigated. A retraction leads to a significant parasite drag reduction, while also fairings promise large savings. The increase in lift-to-drag ratio is reduced at high lift coefficients due to the influence of induced drag. All configurations are tested on three different design missions with an incremental flight performance algorithm. A trade-off study is performed using the retracted or faired landing gear's weight increase as a variable. The analysis reveals only small mission performance gains as the aerodynamic improvements are negated by weight penalties. A new workflow for decision-making is presented that allows to estimate if a change in landing gear configuration is beneficial for a small UAV. Y1 - 2018 U6 - https://doi.org/10.25967/480058 PB - DGLR CY - Bonn ER - TY - JOUR A1 - Schildt, Ph. A1 - Braun, Carsten A1 - Marzocca, P. T1 - Metric evaluating potentials of condition-monitoring approaches for hybrid electric aircraft propulsion systems JF - CEAS Aeronautical Journal Y1 - 2019 U6 - https://doi.org/10.1007/s13272-019-00411-3 SN - 1869-5590 SP - 1 EP - 14 PB - Springer CY - Berlin ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 ER - TY - CHAP A1 - Schildt, P. A1 - Braun, Carsten A1 - Marcocca, P. T1 - Flight testing the extra 330LE flying testbed T2 - 48th Annual International Symposium of the Society of Flight Test Engineers 2017 Y1 - 2017 SN - 978-151085387-4 N1 - 48th Annual International Symposium of the Society of Flight Test Engineers 2017, SFTE 2017; Destin; United States; 30 October 2017 through 2 November 2017 SP - 349 EP - 362 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, C. T1 - On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology. KW - Hybrid-electric aircraft KW - Aircraft design KW - Design rules KW - Green aircraft Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_99 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1261 EP - 1272 PB - Springer CY - Singapore ER - TY - CHAP A1 - Ballmann, Josef A1 - Boucke, Alexander A1 - Braun, Carsten T1 - Aeroelastic sensitivity in the transonic regime T2 - Symposium Transsonicum IV : proceedings of the IUTAM symposium held in Göttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73 Y1 - 2003 SN - 978-94-010-3998-7 SP - 225 EP - 236 PB - Kluwer Academic CY - Dordrecht ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft JF - Journal of Aircraft N2 - Until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial hybrid-electric, parallel hybrid-electric, fully electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This Paper provides insight into some factors that drive a new design toward either conventional or hybrid propulsion systems. General aviation aircraft, regional transport aircraft vertical takeoff and landing air taxis, and unmanned aerial vehicles are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their takeoff mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Only parallel-hybrid-electric powertrains are taken into account. Aeropropulsive interaction effects are neglected. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints. However, if the propulsion system is sized by a continuous power requirement, hybrid-electric systems offer hardly any benefit. Y1 - 2020 U6 - https://doi.org/10.2514/1.C035897 SN - 1533-3868 VL - 57 IS - 5 PB - AIAA CY - Reston, Va. ER -