TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft T2 - AIAA Scitech 2019 Forum Y1 - 2019 U6 - https://doi.org/10.2514/6.2019-1812 N1 - AIAA Scitech Forum, 2019; San Diego; United States; 7 January 2019 through 11 January 2019 ER - TY - CHAP A1 - Kapoor, Hrshi A1 - Boller, Christian A1 - Giljohann, Sebastian A1 - Braun, Carsten T1 - Strategies for structural health monitoring implementation potential assessment in aircraft operational life extension considerations T2 - 2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany Y1 - 2010 SN - 978-3-940283-28-3 PB - Dt. Gesellschaft für Zerstörungsfreie Prüfung CY - Berlin ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Improved Form Factor for Drag Estimation of Fuselages with Various Cross Sections JF - Journal of Aircraft N2 - The paper presents an aerodynamic investigation of 70 different streamlined bodies with fineness ratios ranging from 2 to 10. The bodies are chosen to idealize both unmanned and small manned aircraft fuselages and feature cross-sectional shapes that vary from circular to quadratic. The study focuses on friction and pressure drag in dependency of the individual body’s fineness ratio and cross section. The drag forces are normalized with the respective body’s wetted area to comply with an empirical drag estimation procedure. Although the friction drag coefficient then stays rather constant for all bodies, their pressure drag coefficients decrease with an increase in fineness ratio. Referring the pressure drag coefficient to the bodies’ cross-sectional areas shows a distinct pressure drag minimum at a fineness ratio of about three. The pressure drag of bodies with a quadratic cross section is generally higher than for bodies of revolution. The results are used to derive an improved form factor that can be employed in a classic empirical drag estimation method. The improved formulation takes both the fineness ratio and cross-sectional shape into account. It shows superior accuracy in estimating streamlined body drag when compared with experimental data and other form factor formulations of the literature. Y1 - 2020 U6 - https://doi.org/10.2514/1.C036032 SN - 1533-3868 SP - 1 EP - 13 PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Computational study of the aeroelastic equilibrium configuration of a swept wind tunnel wing model in subsonic flow T2 - High performance computing in science and engineering '06. Transactions of the High Performance Computing Center Stuttgart (HLRS) 2006 / Wolfgang E. Nagel ... Eds. N2 - In the Collaborative Research Center SFB 401 at RWTH Aachen University, the numerical aeroelastic method SOFIA for direct numerical aeroelastic simulation is being progressively developed. Numerical results obtained by applying SOFIA were compared with measured data of static and dynamic aeroelastic wind tunnel tests for an elastic swept wing in subsonic flow. Y1 - 2007 SN - 978-3-540-36165-7 SP - 421 EP - 434 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Laarmann, Lukas A1 - Thoma, Andreas A1 - Misch, Philipp A1 - Röth, Thilo A1 - Braun, Carsten A1 - Watkins, Simon A1 - Fard, Mohammad T1 - Automotive safety approach for future eVTOL vehicles JF - CEAS Aeronautical Journal N2 - The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL’s crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented. KW - eVTOL development KW - eVTOL safety KW - Crashworthiness KW - Automotive safety approach KW - Full-vehicle crash test Y1 - 2023 U6 - https://doi.org/10.1007/s13272-023-00655-0 SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Lukas Laarmann PB - Springer Nature ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - About the wing and whirl flutter of a slender wing–propeller system JF - Journal of Aircraft N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing–propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing–propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing–propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis. Y1 - 2024 U6 - https://doi.org/10.2514/1.C037542 SN - 1533-3868 SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Thoma, Andreas A1 - Stiemer, Luc A1 - Braun, Carsten A1 - Fisher, Alex A1 - Gardi, Alessandro G. T1 - Potential of hybrid neural network local path planner for small UAV in urban environments T2 - AIAA SCITECH 2023 Forum N2 - This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2359 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Wellmer, Georg A1 - Behr, Marek A1 - Ballmann, Josef T1 - Development of a modular method for computational aero-structural analysis of aircraft T2 - Summary of flow modulation and fluid-structure interaction findings. Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany, 1997-2008 / ed.: Wolfgang Schröder. Notes on numerical fluid mechanics and multidisciplinary design. Vol. 109 Y1 - 2010 SN - 978-3-642-04087-0 SP - 205 EP - 238 PB - Springer CY - Berlin ER - TY - JOUR A1 - Bergmann, Ole A1 - Götten, Falk A1 - Braun, Carsten A1 - Janser, Frank T1 - Comparison and evaluation of blade element methods against RANS simulations and test data JF - CEAS Aeronautical Journal N2 - This paper compares several blade element theory (BET) method-based propeller simulation tools, including an evaluation against static propeller ground tests and high-fidelity Reynolds-Average Navier Stokes (RANS) simulations. Two proprietary propeller geometries for paraglider applications are analysed in static and flight conditions. The RANS simulations are validated with the static test data and used as a reference for comparing the BET in flight conditions. The comparison includes the analysis of varying 2D aerodynamic airfoil parameters and different induced velocity calculation methods. The evaluation of the BET propeller simulation tools shows the strength of the BET tools compared to RANS simulations. The RANS simulations underpredict static experimental data within 10% relative error, while appropriate BET tools overpredict the RANS results by 15–20% relative error. A variation in 2D aerodynamic data depicts the need for highly accurate 2D data for accurate BET results. The nonlinear BET coupled with XFOIL for the 2D aerodynamic data matches best with RANS in static operation and flight conditions. The novel BET tool PropCODE combines both approaches and offers further correction models for highly accurate static and flight condition results. KW - BET KW - CFD propeller simulation KW - Propeller aerodynamics KW - Actuator disk modelling KW - Propeller performance Y1 - 2022 U6 - https://doi.org/10.1007/s13272-022-00579-1 SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Ole Bergmann VL - 13 SP - 535 EP - 557 PB - Springer CY - Wien ER - TY - CHAP A1 - Britten, G. A1 - Braun, Carsten A1 - Hesse, M. A1 - Ballmann, Josef T1 - Computational aeroelasticity with reduced structural models T2 - Flow modulation and fluid-structure interaction at airplane wings : research results of the Collaborative Research Center SFB 401 at RWTH Aachen, University of Technology, Aachen, Germany / Josef Ballmann (Ed.) Notes on numerical fluid mechanics and multidisciplinary design. Vol. 84 Y1 - 2003 SN - 3-540-40209-8 SP - 275 EP - 299 PB - Springer CY - Berlin ER -